The Distribution of Returns at Longer Horizons

E. Eberlein, D. Madan
{"title":"The Distribution of Returns at Longer Horizons","authors":"E. Eberlein, D. Madan","doi":"10.2139/ssrn.1540777","DOIUrl":null,"url":null,"abstract":"AbstractLonger horizon returns are constructed from data on daily returns. Observed drawbacks of a Levy process are a sharp decrease in skewness and excess kurtosis. Drawbacks to scaling are a flat term structure of skewness and excess kurtosis. A strategy that combines some exposure to independent increments and some exposure to scaling is developed in the context of self decomposable daily return distributions. Estimations are conducted on 400 stocks and we report that a good strategy for constructing longer horizon returns can be that of accumulating as i.i.d. half the daily return while scaling the remainder at rate one half.","PeriodicalId":145189,"journal":{"name":"Robert H. Smith School of Business Research Paper Series","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robert H. Smith School of Business Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1540777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

AbstractLonger horizon returns are constructed from data on daily returns. Observed drawbacks of a Levy process are a sharp decrease in skewness and excess kurtosis. Drawbacks to scaling are a flat term structure of skewness and excess kurtosis. A strategy that combines some exposure to independent increments and some exposure to scaling is developed in the context of self decomposable daily return distributions. Estimations are conducted on 400 stocks and we report that a good strategy for constructing longer horizon returns can be that of accumulating as i.i.d. half the daily return while scaling the remainder at rate one half.
长线投资的回报分布
长期收益是由日收益数据构成的。观察到的Levy过程的缺点是偏度和过量峰度的急剧下降。缩放的缺点是一个平坦的偏度和过量峰度的期限结构。在自分解日收益分布的背景下,开发了一种将一些独立增量敞口和一些缩放敞口相结合的策略。我们对400只股票进行了估计,并报告说,构建长期回报的一个好策略可以是将日收益累积一半,而将其余部分按一半的比率进行缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信