Managing edge resources for fully autonomous aerial systems

Jayson G. Boubin, Naveen T. R. Babu, Christopher Stewart, J. Chumley, Shiqi Zhang
{"title":"Managing edge resources for fully autonomous aerial systems","authors":"Jayson G. Boubin, Naveen T. R. Babu, Christopher Stewart, J. Chumley, Shiqi Zhang","doi":"10.1145/3318216.3363306","DOIUrl":null,"url":null,"abstract":"Fully autonomous aerial systems (FAAS) fly complex missions guided wholly by software. If users choose software, compute hardware and aircraft well, FAAS can complete missions faster and safer than unmanned aerial systems piloted by humans. On the other hand, poorly managed edge resources slow down missions, waste energy and inflate costs. This paper presents a model-driven approach to manage FAAS. We fly real FAAS missions, profile compute and aircraft resource usage and model expected demands. Naive profiling approaches use traces from previous flights to infer resource usage. However, edge resources can affect where FAAS fly and which data they sense. Usage profiles can diverge greatly across edge management policies. Instead of using traces, we characterize whole flight areas to accurately model resource usage for any flight path. We combine expected resource demands to model mission throughput, i.e., missions completed per fully charged battery. We validated our model by creating FAAS, measuring mission throughput across many system settings. Our FAAS benchmarks, released through our open source FAAS suite SoftwarePilot, execute realistic missions: autonomous photography, search and rescue, and agricultural scouting using well-known software. Our model predicted throughput with 4% error across mission, software and hardware settings. Competing approaches yielded 10--24% error. We used our SoftwarePilot benchmarks to study (1) GPU acceleration, scale up, and scale out, (2) onboard, edge and cloud computing, (3) energy and monetary budgets, and (4) software driven GPU management. We found that model-driven management can boost mission throughput by 10X and reduce costs by 87%.","PeriodicalId":406118,"journal":{"name":"Proceedings of the 4th ACM/IEEE Symposium on Edge Computing","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM/IEEE Symposium on Edge Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318216.3363306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Fully autonomous aerial systems (FAAS) fly complex missions guided wholly by software. If users choose software, compute hardware and aircraft well, FAAS can complete missions faster and safer than unmanned aerial systems piloted by humans. On the other hand, poorly managed edge resources slow down missions, waste energy and inflate costs. This paper presents a model-driven approach to manage FAAS. We fly real FAAS missions, profile compute and aircraft resource usage and model expected demands. Naive profiling approaches use traces from previous flights to infer resource usage. However, edge resources can affect where FAAS fly and which data they sense. Usage profiles can diverge greatly across edge management policies. Instead of using traces, we characterize whole flight areas to accurately model resource usage for any flight path. We combine expected resource demands to model mission throughput, i.e., missions completed per fully charged battery. We validated our model by creating FAAS, measuring mission throughput across many system settings. Our FAAS benchmarks, released through our open source FAAS suite SoftwarePilot, execute realistic missions: autonomous photography, search and rescue, and agricultural scouting using well-known software. Our model predicted throughput with 4% error across mission, software and hardware settings. Competing approaches yielded 10--24% error. We used our SoftwarePilot benchmarks to study (1) GPU acceleration, scale up, and scale out, (2) onboard, edge and cloud computing, (3) energy and monetary budgets, and (4) software driven GPU management. We found that model-driven management can boost mission throughput by 10X and reduce costs by 87%.
管理完全自主航空系统的边缘资源
完全自主航空系统(FAAS)完全由软件指导执行复杂任务。如果用户选择好软件、计算硬件和飞机,FAAS可以比人类驾驶的无人驾驶飞机系统更快、更安全地完成任务。另一方面,管理不善的边缘资源会减慢任务速度,浪费能源并增加成本。本文提出了一种模型驱动的FAAS管理方法。我们飞行真实的FAAS任务,剖面计算和飞机资源使用和模型的预期需求。朴素的分析方法使用以前飞行的痕迹来推断资源使用情况。然而,边缘资源可能会影响FAAS的飞行位置和它们感知的数据。使用概要文件在不同的边缘管理策略之间可能会有很大的差异。我们不使用轨迹,而是描述整个飞行区域,以准确地模拟任何飞行路径的资源使用情况。我们结合预期资源需求来模拟任务吞吐量,即每个充满电的电池完成的任务。我们通过创建FAAS来验证我们的模型,测量跨许多系统设置的任务吞吐量。我们的FAAS基准,通过我们的开源FAAS套件SoftwarePilot发布,执行现实任务:自主摄影,搜索和救援,以及使用知名软件的农业侦察。我们的模型预测吞吐量在任务、软件和硬件设置中有4%的误差。相互竞争的方法产生了10- 24%的误差。我们使用我们的SoftwarePilot基准来研究(1)GPU加速,向上扩展和向外扩展,(2)板载,边缘和云计算,(3)能源和货币预算,以及(4)软件驱动的GPU管理。我们发现,模型驱动的管理可以将任务吞吐量提高10倍,并将成本降低87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信