Artificial Neural Network Approach Assessment of Short-Circuit Fault Detection in a Three Phase Inverter

M. Abid, S. Laribi, Zuhair S. Al-asgar, M. Larbi
{"title":"Artificial Neural Network Approach Assessment of Short-Circuit Fault Detection in a Three Phase Inverter","authors":"M. Abid, S. Laribi, Zuhair S. Al-asgar, M. Larbi","doi":"10.1109/ICOTEN52080.2021.9493498","DOIUrl":null,"url":null,"abstract":"The design of a new technique based on Neural Networks for the diagnosis of three-phase inverters is the objective of this article. The new technique is based on the fast Fourier transform of the currents in the output of the inverter with the aim of detecting short circuits faults in the Insulated Gate Bipolar Transistor (IGBT) switches of the inverter. These currents also form a database for the technique used from their modules and phases angles. Implementing this technique in the inverter, makes the location of the switch shorted easy and quick even if there is more than one switch shorted. Using SimPower / Simulink® MATLAB environment, the obtained results shown the perfect performance of the Artificial Neural Network method (ANN) to detect the short-circuit faults in three-phase inverters.","PeriodicalId":308802,"journal":{"name":"2021 International Congress of Advanced Technology and Engineering (ICOTEN)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Congress of Advanced Technology and Engineering (ICOTEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOTEN52080.2021.9493498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The design of a new technique based on Neural Networks for the diagnosis of three-phase inverters is the objective of this article. The new technique is based on the fast Fourier transform of the currents in the output of the inverter with the aim of detecting short circuits faults in the Insulated Gate Bipolar Transistor (IGBT) switches of the inverter. These currents also form a database for the technique used from their modules and phases angles. Implementing this technique in the inverter, makes the location of the switch shorted easy and quick even if there is more than one switch shorted. Using SimPower / Simulink® MATLAB environment, the obtained results shown the perfect performance of the Artificial Neural Network method (ANN) to detect the short-circuit faults in three-phase inverters.
人工神经网络方法在三相逆变器短路故障检测中的应用
本文的目的是设计一种基于神经网络的三相逆变器故障诊断新技术。该技术基于逆变器输出电流的快速傅里叶变换,目的是检测逆变器的绝缘栅双极晶体管(IGBT)开关的短路故障。这些电流也从它们的模块和相位角形成了一个技术数据库。在逆变器中实现该技术,即使有多个开关短路,也可以方便快捷地定位开关短路。在SimPower / Simulink®MATLAB环境下,仿真结果显示了人工神经网络方法(ANN)检测三相逆变器短路故障的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信