Block Level Video Steganalysis Scheme

K. Kancherla, Srinivas Mukkamala
{"title":"Block Level Video Steganalysis Scheme","authors":"K. Kancherla, Srinivas Mukkamala","doi":"10.1109/ICMLA.2012.121","DOIUrl":null,"url":null,"abstract":"In this paper, we propose block level video steganalysis method. Current steganalysis methods detect steganograms at frame level only. In this paper, we present a new steganalysis method using correlation of pattern noise between consecutive frames as feature. First we extract the pattern noise from each frame and obtain difference between consecutive frames pattern noise. Later we divide the difference matrix into blocks and apply Discrete Cosine Transform (DCT). We use the 63 lowest frequency components of DCT coefficients as feature vector for the block. We used ten different videos in our experiments. Our results show the potential of our method in detecting video steganograms at block level.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose block level video steganalysis method. Current steganalysis methods detect steganograms at frame level only. In this paper, we present a new steganalysis method using correlation of pattern noise between consecutive frames as feature. First we extract the pattern noise from each frame and obtain difference between consecutive frames pattern noise. Later we divide the difference matrix into blocks and apply Discrete Cosine Transform (DCT). We use the 63 lowest frequency components of DCT coefficients as feature vector for the block. We used ten different videos in our experiments. Our results show the potential of our method in detecting video steganograms at block level.
块级视频隐写分析方案
本文提出了一种块级视频隐写分析方法。目前的隐写分析方法仅在帧级检测隐写。本文提出了一种以连续帧间模式噪声的相关性为特征的隐写分析方法。首先提取每帧图像的模式噪声,得到连续帧之间的模式噪声差值。然后将差分矩阵分割成块并应用离散余弦变换(DCT)。我们使用DCT系数的63个最低频率分量作为块的特征向量。我们在实验中使用了10个不同的视频。我们的结果显示了我们的方法在块级检测视频隐写的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信