IntentFinder: A system for discovering significant information implicit in large, heterogeneous document collections and computationally mapping social networks and command nodes

L. Ungar, S. Leibholz, C. Chaski
{"title":"IntentFinder: A system for discovering significant information implicit in large, heterogeneous document collections and computationally mapping social networks and command nodes","authors":"L. Ungar, S. Leibholz, C. Chaski","doi":"10.1109/THS.2011.6107874","DOIUrl":null,"url":null,"abstract":"IntentFinder is a computational method of extracting mutually relevant information from a large collection of narrative data. We describe an approach that takes advantage of a new view of documents as coming from evolving stories. IntentFinder consists of six main components: 1) A document management system 2) A story extraction system 3) A significance determination system 4) A reputation management 5) A lexical-semantic analysis 6) A user interface In addition a method has been found for quantitatively determining the topology and hierarchy of a social subnetwork embedded inside a very noisy self-reorganizing network (e.g., the Internet). All these components will work together to allow analysts to discover and understand events and stories implicit in collections of documents, including newswire, reports, emails and tweets, which would be prohibitively difficult to uncover manually, and ultimately estimating the organizational structure of a social network.","PeriodicalId":228322,"journal":{"name":"2011 IEEE International Conference on Technologies for Homeland Security (HST)","volume":"417 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Technologies for Homeland Security (HST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THS.2011.6107874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

IntentFinder is a computational method of extracting mutually relevant information from a large collection of narrative data. We describe an approach that takes advantage of a new view of documents as coming from evolving stories. IntentFinder consists of six main components: 1) A document management system 2) A story extraction system 3) A significance determination system 4) A reputation management 5) A lexical-semantic analysis 6) A user interface In addition a method has been found for quantitatively determining the topology and hierarchy of a social subnetwork embedded inside a very noisy self-reorganizing network (e.g., the Internet). All these components will work together to allow analysts to discover and understand events and stories implicit in collections of documents, including newswire, reports, emails and tweets, which would be prohibitively difficult to uncover manually, and ultimately estimating the organizational structure of a social network.
IntentFinder:一个系统,用于发现隐含在大型异构文档集合中的重要信息,并计算映射社会网络和命令节点
IntentFinder是一种从大量叙事数据中提取相互相关信息的计算方法。我们描述了一种方法,该方法利用了来自不断发展的故事的文档的新视图。IntentFinder由六个主要组件组成:1)文档管理系统2)故事提取系统3)重要性确定系统4)声誉管理5)词汇语义分析6)用户界面此外,还发现了一种方法,用于定量确定嵌入在非常嘈杂的自重组网络(例如Internet)中的社会子网的拓扑结构和层次结构。所有这些组件将一起工作,使分析人员能够发现和理解隐含在文档集合中的事件和故事,包括新闻、报告、电子邮件和推文,这些将难以手工发现,并最终估计社交网络的组织结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信