Andreas Weber, N. Herbst, Henning Groenda, Samuel Kounev
{"title":"Towards a Resource Elasticity Benchmark for Cloud Environments","authors":"Andreas Weber, N. Herbst, Henning Groenda, Samuel Kounev","doi":"10.1145/2649563.2649571","DOIUrl":null,"url":null,"abstract":"Auto-scaling features offered by today's cloud infrastructures provide increased flexibility especially for customers that experience high variations in the load intensity over time. However, auto-scaling features introduce new system quality attributes when considering their accuracy, timing, and boundaries. Therefore, distinguishing between different offerings has become a complex task, as it is not yet supported by reliable metrics and measurement approaches. In this paper, we discuss shortcomings of existing approaches for measuring and evaluating elastic behavior and propose a novel benchmark methodology specifically designed for evaluating the elasticity aspects of modern cloud platforms. The benchmark is based on open workloads with realistic load variation profiles that are calibrated to induce identical resource demand variations independent of the underlying hardware performance. Furthermore, we propose new metrics that capture the accuracy of resource allocations and de-allocations, as well as the timing aspects of an auto-scaling mechanism explicitly.","PeriodicalId":328985,"journal":{"name":"HotTopiCS '14","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HotTopiCS '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2649563.2649571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Auto-scaling features offered by today's cloud infrastructures provide increased flexibility especially for customers that experience high variations in the load intensity over time. However, auto-scaling features introduce new system quality attributes when considering their accuracy, timing, and boundaries. Therefore, distinguishing between different offerings has become a complex task, as it is not yet supported by reliable metrics and measurement approaches. In this paper, we discuss shortcomings of existing approaches for measuring and evaluating elastic behavior and propose a novel benchmark methodology specifically designed for evaluating the elasticity aspects of modern cloud platforms. The benchmark is based on open workloads with realistic load variation profiles that are calibrated to induce identical resource demand variations independent of the underlying hardware performance. Furthermore, we propose new metrics that capture the accuracy of resource allocations and de-allocations, as well as the timing aspects of an auto-scaling mechanism explicitly.