Malware Detection Using Ensemble Learning and File Monitoring

Tilak Vignesh, Sowhith Reddy, Sonit Kumar, Akshat Chourey, Chandrashekhar Pomu Chavan
{"title":"Malware Detection Using Ensemble Learning and File Monitoring","authors":"Tilak Vignesh, Sowhith Reddy, Sonit Kumar, Akshat Chourey, Chandrashekhar Pomu Chavan","doi":"10.1109/ICSTSN57873.2023.10151567","DOIUrl":null,"url":null,"abstract":"In essence, malware refers to harmful programs that cybercriminals use to infiltrate a specific machine or an organisation’s complete network. It takes advantage of flaws in legitimate software (such a browser or plugin for an online application) that can be hijacked. ML is widely used to mitigate this problem which is an excellent solution but the problem with this is that it’s possible for ML to falsely detect some files causing system exploits. This paper aims to provide a method to detect malware using ensemble learning and further monitor files based on a probability value assigned to it by the model.","PeriodicalId":325019,"journal":{"name":"2023 2nd International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTSN57873.2023.10151567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In essence, malware refers to harmful programs that cybercriminals use to infiltrate a specific machine or an organisation’s complete network. It takes advantage of flaws in legitimate software (such a browser or plugin for an online application) that can be hijacked. ML is widely used to mitigate this problem which is an excellent solution but the problem with this is that it’s possible for ML to falsely detect some files causing system exploits. This paper aims to provide a method to detect malware using ensemble learning and further monitor files based on a probability value assigned to it by the model.
基于集成学习和文件监控的恶意软件检测
从本质上讲,恶意软件是指网络犯罪分子用来渗透特定机器或组织的整个网络的有害程序。它利用了可以被劫持的合法软件(如在线应用程序的浏览器或插件)中的缺陷。ML被广泛用于缓解这个问题,这是一个很好的解决方案,但问题是ML有可能错误地检测到一些导致系统漏洞的文件。本文旨在提供一种使用集成学习检测恶意软件的方法,并根据模型分配给它的概率值进一步监控文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信