Ontology Learning from Text: Why the Ontology Learning Layer Cake is not Viable

Abel Browarnik, O. Maimon
{"title":"Ontology Learning from Text: Why the Ontology Learning Layer Cake is not Viable","authors":"Abel Browarnik, O. Maimon","doi":"10.4018/IJSSS.2015070101","DOIUrl":null,"url":null,"abstract":"The goal of Ontology Learning from Text is to learn ontologies that represent domains or applications that change often. Manually learning and updating such ontologies is too expensive. This is the reason for the Ontology Learning discipline's emergence. The leading approach to Ontology Learning from Text is the Ontology Learning Layer Cake. This approach splits the task into four or five sequential tasks. Each of the tasks may use diverse methods, ranging from uses of Linguistic knowledge to Machine Learning. The authors review the shortcomings of the Ontology Learning Layer Cake approach and conclude that the approach is not viable for Ontology Learning from Text. They suggest alternative approaches that may help learning ontologies in an efficient, effective way.","PeriodicalId":424248,"journal":{"name":"Int. J. Signs Semiot. Syst.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Signs Semiot. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSS.2015070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The goal of Ontology Learning from Text is to learn ontologies that represent domains or applications that change often. Manually learning and updating such ontologies is too expensive. This is the reason for the Ontology Learning discipline's emergence. The leading approach to Ontology Learning from Text is the Ontology Learning Layer Cake. This approach splits the task into four or five sequential tasks. Each of the tasks may use diverse methods, ranging from uses of Linguistic knowledge to Machine Learning. The authors review the shortcomings of the Ontology Learning Layer Cake approach and conclude that the approach is not viable for Ontology Learning from Text. They suggest alternative approaches that may help learning ontologies in an efficient, effective way.
基于文本的本体学习:本体学习层饼不可行的原因
从文本中学习本体的目标是学习代表经常变化的领域或应用程序的本体。手动学习和更新这些本体的成本太高。这就是本体学习学科产生的原因。从文本中进行本体学习的主要方法是本体学习层饼。这种方法将任务分成四到五个连续的任务。每个任务都可以使用不同的方法,从使用语言学知识到机器学习。作者回顾了本体学习层饼方法的不足,认为该方法不适用于从文本中进行本体学习。他们提出了可以帮助以高效、有效的方式学习本体的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信