Geometric algebra rotors for skinned character animation blending

G. Papagiannakis
{"title":"Geometric algebra rotors for skinned character animation blending","authors":"G. Papagiannakis","doi":"10.1145/2542355.2542369","DOIUrl":null,"url":null,"abstract":"The main goal and contribution of this work is to show that (automatically generated) computer implementations of geometric algebra (GA) can perform at a faster level compared to standard (dual) quaternion geometry implementations for real-time character animation blending. By this we mean that if some piece of geometry (e.g. Quaternions) is implemented through geometric algebra, the result is as efficient in terms of visual quality and even faster (in terms of computation time and memory usage) as the traditional quaternion and dual quaternion algebra implementation. This should be so even without taking into account certain algorithmic enhancements that geometric algebra may allow in selected applications. This work describes two implementation approaches for quaternion interpolation using Euclidean GA rotors for skinned character animation blending. It also lays the foundation so that GA can be employed for further calculations (skinning, rendering) under a unified geometry computation framework.","PeriodicalId":232593,"journal":{"name":"SIGGRAPH Asia 2013 Technical Briefs","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2013 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2542355.2542369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The main goal and contribution of this work is to show that (automatically generated) computer implementations of geometric algebra (GA) can perform at a faster level compared to standard (dual) quaternion geometry implementations for real-time character animation blending. By this we mean that if some piece of geometry (e.g. Quaternions) is implemented through geometric algebra, the result is as efficient in terms of visual quality and even faster (in terms of computation time and memory usage) as the traditional quaternion and dual quaternion algebra implementation. This should be so even without taking into account certain algorithmic enhancements that geometric algebra may allow in selected applications. This work describes two implementation approaches for quaternion interpolation using Euclidean GA rotors for skinned character animation blending. It also lays the foundation so that GA can be employed for further calculations (skinning, rendering) under a unified geometry computation framework.
用于蒙皮角色动画混合的几何代数转子
这项工作的主要目标和贡献是表明(自动生成的)几何代数(GA)的计算机实现与标准(对偶)四元数几何实现相比,可以在更快的水平上执行实时角色动画混合。我们的意思是,如果一些几何图形(例如四元数)通过几何代数实现,其结果在视觉质量方面与传统的四元数和对偶四元数代数实现一样有效,甚至更快(在计算时间和内存使用方面)。即使不考虑几何代数在选定应用程序中可能允许的某些算法增强,也应该如此。这项工作描述了使用欧几里德GA转子进行蒙皮角色动画混合的四元数插值的两种实现方法。它还为在统一的几何计算框架下使用遗传算法进行进一步的计算(蒙皮、渲染)奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信