Towards optimal parallel radix sorting

R. Vaidyanathan, C. Hartmann, P. Varshney
{"title":"Towards optimal parallel radix sorting","authors":"R. Vaidyanathan, C. Hartmann, P. Varshney","doi":"10.1109/IPPS.1993.262880","DOIUrl":null,"url":null,"abstract":"The authors propose a radix sorting algorithm for n m-bit numbers (where m= Omega (log n) and polynomially upper bounded in n) that runs in O(t(n)log m) time, on any PRAM with mp(n)/logn logm O(logn)-bit processors; p(n) and t(n) are the number of processors and time needed for any deterministic algorithm to sort n logn-bit numbers stably (integer sorting) on the same type of PRAM as used by the radix sorting algorithm. The proposed algorithm has the same factor of inefficiency (if any) as that of the integer sorting algorithm used by it.<<ETX>>","PeriodicalId":248927,"journal":{"name":"[1993] Proceedings Seventh International Parallel Processing Symposium","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Seventh International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1993.262880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The authors propose a radix sorting algorithm for n m-bit numbers (where m= Omega (log n) and polynomially upper bounded in n) that runs in O(t(n)log m) time, on any PRAM with mp(n)/logn logm O(logn)-bit processors; p(n) and t(n) are the number of processors and time needed for any deterministic algorithm to sort n logn-bit numbers stably (integer sorting) on the same type of PRAM as used by the radix sorting algorithm. The proposed algorithm has the same factor of inefficiency (if any) as that of the integer sorting algorithm used by it.<>
走向最优并行基数排序
在任意具有mp(n)/logn logm O(logn)位处理器的PRAM上,作者提出了一种n m-bit数的基数排序算法(其中m= Omega (logn)和n的多项式上界),该算法运行时间为O(t(n)log m);p(n)和t(n)是任何确定性算法在与基数排序算法使用的相同类型的PRAM上对n个对数位数进行稳定排序(整数排序)所需的处理器数量和时间。所提出的算法具有与它所使用的整数排序算法相同的低效率因素(如果有的话)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信