Some Notes on the Proof of Entropy Increase in the Thermalization of Two Blocks

Li Pinjun
{"title":"Some Notes on the Proof of Entropy Increase in the Thermalization of Two Blocks","authors":"Li Pinjun","doi":"10.11648/J.AJPA.20210901.12","DOIUrl":null,"url":null,"abstract":"The thermalization of two blocks with different initial temperatures in an insulated recipient is an irreversible process, so the entropy of the system will increase during this process. Lima (Eur. J. Phys. 36 (2015) 068001) has given an elegant and concise proof for that which had been proved by Mungan (Eur. J. Phys. 36 (2015) 048004) with a complex method. However, there are still two problems in Lima’s proof: 1. It is assumed that the heat capacities of two blocks are constants, which is not true in most practical cases. 2. An inequality that describes the concavity of the logarithm function was used but it is still relatively uncommon for beginners. In this article, two stricter and simpler proof were given for the problem 1 by making use of 1/T–Q diagram and T-S diagram, respectively. In the Proof by 1/T–Q diagram, the area under the curve of 1/T over the domain [0, Q0] is the value of the entropy change of the cooler block, which is positive; while the area under the curve of 1/T’ over the domain [Q0, 0] is the value of the entropy change of the hotter block, which is negative. It is rather intuitive to compare these two values by using the monotonicity and domains of T and Т’. A similar method is adopted in the proof by T-S diagram. For the problem 2, another proof for the key inequality in Mungan’s paper was given by using elementary geometric method which is really more suitable for physics beginners.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20210901.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The thermalization of two blocks with different initial temperatures in an insulated recipient is an irreversible process, so the entropy of the system will increase during this process. Lima (Eur. J. Phys. 36 (2015) 068001) has given an elegant and concise proof for that which had been proved by Mungan (Eur. J. Phys. 36 (2015) 048004) with a complex method. However, there are still two problems in Lima’s proof: 1. It is assumed that the heat capacities of two blocks are constants, which is not true in most practical cases. 2. An inequality that describes the concavity of the logarithm function was used but it is still relatively uncommon for beginners. In this article, two stricter and simpler proof were given for the problem 1 by making use of 1/T–Q diagram and T-S diagram, respectively. In the Proof by 1/T–Q diagram, the area under the curve of 1/T over the domain [0, Q0] is the value of the entropy change of the cooler block, which is positive; while the area under the curve of 1/T’ over the domain [Q0, 0] is the value of the entropy change of the hotter block, which is negative. It is rather intuitive to compare these two values by using the monotonicity and domains of T and Т’. A similar method is adopted in the proof by T-S diagram. For the problem 2, another proof for the key inequality in Mungan’s paper was given by using elementary geometric method which is really more suitable for physics beginners.
关于两块热化过程中熵增证明的若干注记
两个初始温度不同的块体在绝缘受热体内的热化是一个不可逆的过程,因此在此过程中系统的熵会增加。利马(欧元。J. Phys. 36(2015) 068001)给出了一个优雅而简洁的证明,证明了Mungan (Eur。物理学报,36(2015)048004)。然而,利马的证明中仍然存在两个问题:1。假定两个块的热容是常数,这在大多数实际情况下是不成立的。2. 这里使用了一个描述对数函数的凹性的不等式,但对于初学者来说还是比较少见的。本文分别利用1/ T-Q图和T-S图对问题1给出了更严格和更简单的证明。在1/T - q证明图中,在[0,Q0]域上,1/T曲线下的面积为冷却块的熵变值,为正;在[Q0, 0]区域上1/T '曲线下的面积为热块的熵变值,为负值。通过使用T和Т '的单调性和定义域比较这两个值是相当直观的。在T-S图证明中也采用了类似的方法。对于问题2,用初等几何方法对Mungan论文中的关键不等式进行了另一种证明,这种方法更适合物理初学者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信