Rijurekha Sen, Abhinav K. Maurya, B. Raman, Rupesh Mehta, R. Kalyanaraman, Amarjeet Singh
{"title":"Road-RFSense: A Practical RF Sensing--Based Road Traffic Estimation System for Developing Regions","authors":"Rijurekha Sen, Abhinav K. Maurya, B. Raman, Rupesh Mehta, R. Kalyanaraman, Amarjeet Singh","doi":"10.1145/2560189","DOIUrl":null,"url":null,"abstract":"An unprecedented rate of growth in the number of vehicles has resulted in acute road congestion problems worldwide, especially in many developing countries. In this article, we present Road-RFSense, a practical RF sensing--based road traffic estimation system for developing regions. Our first contribution is a new mechanism to sense road occupancy, based on variation in RF link characteristics, when line of sight between a transmitter-receiver pair is obstructed. We design algorithms to classify traffic states into two classes, free-flow versus congested, at timescales of 20 seconds with greater than 90% accuracy.\n We also present a traffic queue length measurement system, where a network of RF sensors can correlate the traffic state classification decisions of individual sensors and detect traffic queue length in real time. Deployment of our system on a Mumbai road gives correct estimates, validated against 9 hours of image-based ground truth. Our third contribution is a large-scale data-driven study, in collaboration with city traffic authorities, to answer questions regarding road-specific classification model training. Finally, we explore multilevel classification into seven different traffic states using a larger set of RF-based features and careful choice of classification algorithms.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"411 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Sens. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2560189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
An unprecedented rate of growth in the number of vehicles has resulted in acute road congestion problems worldwide, especially in many developing countries. In this article, we present Road-RFSense, a practical RF sensing--based road traffic estimation system for developing regions. Our first contribution is a new mechanism to sense road occupancy, based on variation in RF link characteristics, when line of sight between a transmitter-receiver pair is obstructed. We design algorithms to classify traffic states into two classes, free-flow versus congested, at timescales of 20 seconds with greater than 90% accuracy.
We also present a traffic queue length measurement system, where a network of RF sensors can correlate the traffic state classification decisions of individual sensors and detect traffic queue length in real time. Deployment of our system on a Mumbai road gives correct estimates, validated against 9 hours of image-based ground truth. Our third contribution is a large-scale data-driven study, in collaboration with city traffic authorities, to answer questions regarding road-specific classification model training. Finally, we explore multilevel classification into seven different traffic states using a larger set of RF-based features and careful choice of classification algorithms.