Using machine learning to optimize graph execution on NUMA machines

Hiago Mayk G. de A. Rocha, Janaina Schwarzrock, A. Lorenzon, A. C. S. Beck
{"title":"Using machine learning to optimize graph execution on NUMA machines","authors":"Hiago Mayk G. de A. Rocha, Janaina Schwarzrock, A. Lorenzon, A. C. S. Beck","doi":"10.1145/3489517.3530581","DOIUrl":null,"url":null,"abstract":"This paper proposes PredG, a Machine Learning framework to enhance the graph processing performance by finding the ideal thread and data mapping on NUMA systems. PredG is agnostic to the input graph: it uses the available graphs' features to train an ANN to perform predictions as new graphs arrive - without any application execution after being trained. When evaluating PredG over representative graphs and algorithms on three NUMA systems, its solutions are up to 41% faster than the Linux OS Default and the Best Static - on average 2% far from the Oracle -, and it presents lower energy consumption.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes PredG, a Machine Learning framework to enhance the graph processing performance by finding the ideal thread and data mapping on NUMA systems. PredG is agnostic to the input graph: it uses the available graphs' features to train an ANN to perform predictions as new graphs arrive - without any application execution after being trained. When evaluating PredG over representative graphs and algorithms on three NUMA systems, its solutions are up to 41% faster than the Linux OS Default and the Best Static - on average 2% far from the Oracle -, and it presents lower energy consumption.
使用机器学习优化NUMA机器上的图形执行
本文提出了一种机器学习框架PredG,通过在NUMA系统上寻找理想的线程和数据映射来提高图形处理性能。PredG对输入图是不可知的:它使用可用图的特征来训练人工神经网络,在新图到达时执行预测——在训练后不执行任何应用程序。当在三个NUMA系统上对PredG的代表性图形和算法进行评估时,它的解决方案比Linux OS Default和Best Static快41%——平均比Oracle快2%——并且它表现出更低的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信