Object Detection to Identify Shapes of Swallow Nests Using a Deep Learning Algorithm

Denny Indrajaya, Adi Setiawan, Djoko Hartanto, Hariyanto Hariyanto
{"title":"Object Detection to Identify Shapes of Swallow Nests Using a Deep Learning Algorithm","authors":"Denny Indrajaya, Adi Setiawan, Djoko Hartanto, Hariyanto Hariyanto","doi":"10.23917/khif.v8i2.16489","DOIUrl":null,"url":null,"abstract":"- Object detection is basic research in the field of computer vision to detect objects in an image or video. the TensorFlow framework is a widely adopted framework to create object detection programs and models. In this study, an object detection program and model are designed to detect the shape of a swallow's nest which consists of three classes, namely oval, angular, and bowl. The purpose model creation is to find out the likeliness of the swallow's nest to the three classes for the swallow's nest sorting machine. The adopted architecture in the modeling is the MobileNet V2 FPNLite SSD since the model obtained from this architecture results in a good speed in detecting objects. Based on the evaluation results that has been carried out, the model can detect the shape of the swallow's nest which is divided into 3 classes, but in some cases swallow's nest are detected into two classes. This issues can still be handled by adjustmenting several parameterss to the object detection program. Results shows that the obtained mAP value of 61.91%, indicating the model can detect the shape of a swallow's nest moderately.","PeriodicalId":326094,"journal":{"name":"Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23917/khif.v8i2.16489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

- Object detection is basic research in the field of computer vision to detect objects in an image or video. the TensorFlow framework is a widely adopted framework to create object detection programs and models. In this study, an object detection program and model are designed to detect the shape of a swallow's nest which consists of three classes, namely oval, angular, and bowl. The purpose model creation is to find out the likeliness of the swallow's nest to the three classes for the swallow's nest sorting machine. The adopted architecture in the modeling is the MobileNet V2 FPNLite SSD since the model obtained from this architecture results in a good speed in detecting objects. Based on the evaluation results that has been carried out, the model can detect the shape of the swallow's nest which is divided into 3 classes, but in some cases swallow's nest are detected into two classes. This issues can still be handled by adjustmenting several parameterss to the object detection program. Results shows that the obtained mAP value of 61.91%, indicating the model can detect the shape of a swallow's nest moderately.
使用深度学习算法识别燕窝形状的目标检测
-目标检测是计算机视觉领域的基础研究,用于检测图像或视频中的目标。TensorFlow框架是一个被广泛采用的框架,用于创建对象检测程序和模型。本研究设计了一个物体检测程序和模型来检测燕窝的形状,燕窝的形状分为椭圆形、棱角形和碗形三种类型。创建模型的目的是为了找出燕窝分类机对三类的似然度。建模采用的体系结构是MobileNet V2 FPNLite SSD,该体系结构得到的模型具有较好的对象检测速度。根据已经进行的评价结果,该模型可以检测燕窝的形状,将燕窝分为3类,但在某些情况下,燕窝被检测为2类。这个问题仍然可以通过调整目标检测程序的几个参数来处理。结果表明,得到的mAP值为61.91%,表明该模型能较好地检测出燕窝的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信