{"title":"Automated detection of puffing and smoking with wrist accelerometers","authors":"Qu Tang, D. Vidrine, Eric Crowder, S. Intille","doi":"10.4108/icst.pervasivehealth.2014.254978","DOIUrl":null,"url":null,"abstract":"Real-time, automatic detection of smoking behavior could lead to novel measurement tools for smoking research and \"just-in-time\" interventions that may help people quit, reducing preventable deaths. This paper discusses the use of machine learning with wrist accelerometer data for automatic puffing and smoking detection. A two-layer smoking detection model is proposed that incorporates both low-level time domain features and high-level smoking topography such as inter-puff intervals and puff frequency to detect puffing then smoking. On a pilot dataset of 6 individuals observed for 11.8 total hours in real-life settings performing complex tasks while smoking, the model obtains a cross validation F1-score of 0.70 for puffing detection and 0.79 for smoking detection over all participants, and a mean F1-score of 0.75 for puffing detection with user-specific training data. Unresolved challenges that must still be addressed in this activity detection domain are discussed.","PeriodicalId":120856,"journal":{"name":"Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/icst.pervasivehealth.2014.254978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
Real-time, automatic detection of smoking behavior could lead to novel measurement tools for smoking research and "just-in-time" interventions that may help people quit, reducing preventable deaths. This paper discusses the use of machine learning with wrist accelerometer data for automatic puffing and smoking detection. A two-layer smoking detection model is proposed that incorporates both low-level time domain features and high-level smoking topography such as inter-puff intervals and puff frequency to detect puffing then smoking. On a pilot dataset of 6 individuals observed for 11.8 total hours in real-life settings performing complex tasks while smoking, the model obtains a cross validation F1-score of 0.70 for puffing detection and 0.79 for smoking detection over all participants, and a mean F1-score of 0.75 for puffing detection with user-specific training data. Unresolved challenges that must still be addressed in this activity detection domain are discussed.