Robust Iterative Solution for Linear Array-Based 3-D Localization by Message Passing

Yimao Sun, K. Ho, Yanbing Yang, Lei Zhang, Liangyin Chen
{"title":"Robust Iterative Solution for Linear Array-Based 3-D Localization by Message Passing","authors":"Yimao Sun, K. Ho, Yanbing Yang, Lei Zhang, Liangyin Chen","doi":"10.1109/ICASSP49357.2023.10095795","DOIUrl":null,"url":null,"abstract":"Recent research has shown that using the 1-D signal arrival angles observed by linear arrays can locate a 3-D source in unique co-ordinates. Current methods to solve this localization problem are based on semidefinite programming (SDP) or gradient-based iteration, which are either computationally demanding or facing divergence or local convergence issues. This paper reformulates the maxi-mum likelihood (ML) estimation of the 3-D localization problem using the factor graph model, where an effective algorithm is designed through message passing. Although iterative, the proposed solution is more robust to measurement noise than the Gauss-Newton (GN) iterative solution, and the complexity is lower than the SDP solution without the need to introduce semidefinite relaxation error. Simulations validate the analytical performance and complexity, and con-firm the superiority on the convergence of the proposed solution.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent research has shown that using the 1-D signal arrival angles observed by linear arrays can locate a 3-D source in unique co-ordinates. Current methods to solve this localization problem are based on semidefinite programming (SDP) or gradient-based iteration, which are either computationally demanding or facing divergence or local convergence issues. This paper reformulates the maxi-mum likelihood (ML) estimation of the 3-D localization problem using the factor graph model, where an effective algorithm is designed through message passing. Although iterative, the proposed solution is more robust to measurement noise than the Gauss-Newton (GN) iterative solution, and the complexity is lower than the SDP solution without the need to introduce semidefinite relaxation error. Simulations validate the analytical performance and complexity, and con-firm the superiority on the convergence of the proposed solution.
基于消息传递的线性阵列三维定位鲁棒迭代解
最近的研究表明,利用线性阵列观测到的一维信号到达角可以在独特的坐标上定位三维源。目前解决该定位问题的方法是基于半定规划(SDP)或基于梯度的迭代,这些方法要么计算量大,要么面临发散或局部收敛问题。本文利用因子图模型对三维定位问题的最大似然估计进行了重新表述,并通过消息传递设计了一种有效的算法。该方法虽然是迭代的,但对测量噪声的鲁棒性优于高斯-牛顿(GN)迭代解,且复杂度低于SDP解,且不需要引入半定松弛误差。仿真结果验证了该方法的分析性能和复杂度,并验证了该方法在收敛性上的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信