Particle filtering for lane-level map-matching at road bifurcations

Isabella Szottka
{"title":"Particle filtering for lane-level map-matching at road bifurcations","authors":"Isabella Szottka","doi":"10.1109/ITSC.2013.6728226","DOIUrl":null,"url":null,"abstract":"Estimating the map-matched position of a vehicle on a digital map is a key technology for modern navigation and advanced driver assistance systems (ADAS). Inaccurate sensor measurements and a simplified road network representation cause uncertainties in the map-matched position. This paper describes a particle filter method for finding a robust and stable solution for the map-matching problem at the lane-level in ambiguous situations. The proposed approach fuses low-cost sensor data including camera detections of the lane markings with commercial map data. A new spatio-temporal filtering algorithm is introduced for estimating the hypotheses for the map-matched positions together with a confidence measure from the set of weighted particles. The results of tests at road bifurcations indicate that this method produces stable decisions for the correct road segment. It was found that the integration of lane based features improves the performance of the map-matcher at the road level.","PeriodicalId":275768,"journal":{"name":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2013.6728226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Estimating the map-matched position of a vehicle on a digital map is a key technology for modern navigation and advanced driver assistance systems (ADAS). Inaccurate sensor measurements and a simplified road network representation cause uncertainties in the map-matched position. This paper describes a particle filter method for finding a robust and stable solution for the map-matching problem at the lane-level in ambiguous situations. The proposed approach fuses low-cost sensor data including camera detections of the lane markings with commercial map data. A new spatio-temporal filtering algorithm is introduced for estimating the hypotheses for the map-matched positions together with a confidence measure from the set of weighted particles. The results of tests at road bifurcations indicate that this method produces stable decisions for the correct road segment. It was found that the integration of lane based features improves the performance of the map-matcher at the road level.
道路分岔处车道级地图匹配的粒子滤波
在数字地图上估计车辆的地图匹配位置是现代导航和先进驾驶辅助系统(ADAS)的关键技术。不准确的传感器测量和简化的道路网络表示导致地图匹配位置的不确定性。本文描述了一种粒子滤波方法,用于寻找模糊情况下车道级地图匹配问题的鲁棒稳定解。该方法融合了低成本的传感器数据,包括相机检测的车道标记和商业地图数据。介绍了一种新的时空滤波算法,用于估计地图匹配位置的假设,并从加权粒子集中获得置信度度量。在道路分岔处的测试结果表明,该方法对正确的路段产生了稳定的决策。研究发现,基于车道特征的集成提高了地图匹配器在道路层面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信