On-line cursive script recognition using an island-driven search technique

Seung-Ho Lee, Hyunkyu Lee, J. H. Kim
{"title":"On-line cursive script recognition using an island-driven search technique","authors":"Seung-Ho Lee, Hyunkyu Lee, J. H. Kim","doi":"10.1109/ICDAR.1995.602043","DOIUrl":null,"url":null,"abstract":"A new approach for on-line cursive script recognition that combines a letter spotting technique with an island-driven lattice search algorithm is presented. Initially, all plausible letter components within an input pattern are detected, using a letter spotting technique based on hidden Markov models. A word hypothesis lattice is generated as a result of the letter spotting. Then an island-driven search algorithm is performed to find the optimal path on the word hypothesis lattice, which corresponds to the most probable word among the dictionary words. The results of this experiment suggest that the proposed method works effectively in recognizing English cursive words. In a word recognition test, the average 85.4% word accuracy was obtained.","PeriodicalId":273519,"journal":{"name":"Proceedings of 3rd International Conference on Document Analysis and Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1995.602043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A new approach for on-line cursive script recognition that combines a letter spotting technique with an island-driven lattice search algorithm is presented. Initially, all plausible letter components within an input pattern are detected, using a letter spotting technique based on hidden Markov models. A word hypothesis lattice is generated as a result of the letter spotting. Then an island-driven search algorithm is performed to find the optimal path on the word hypothesis lattice, which corresponds to the most probable word among the dictionary words. The results of this experiment suggest that the proposed method works effectively in recognizing English cursive words. In a word recognition test, the average 85.4% word accuracy was obtained.
使用岛驱动搜索技术的在线草书识别
提出了一种结合字母识别技术和岛驱动格搜索算法的在线草书识别新方法。最初,使用基于隐马尔可夫模型的字母识别技术,检测输入模式中所有可能的字母组件。单词假设格是由字母点阵生成的。然后使用岛驱动搜索算法在单词假设格上寻找最优路径,该路径对应于字典单词中最可能的单词。实验结果表明,该方法能够有效地识别英文草书单词。在单词识别测试中,平均准确率达到85.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信