Discrete Cosine Transform for MEG Signal Decoding

S. M. Kia, E. Olivetti, P. Avesani
{"title":"Discrete Cosine Transform for MEG Signal Decoding","authors":"S. M. Kia, E. Olivetti, P. Avesani","doi":"10.1109/PRNI.2013.42","DOIUrl":null,"url":null,"abstract":"In this study, we propose the discrete cosine transform coefficients as a new and effective set of features for recognizing patterns of brain activity in MEG recording. We claim that computing DCT coefficients on the time-frequency representation of MEG signals is an efficient technique to reduce the dimensionality of feature space without losing discriminative power in brain decoding tasks. Our classification results on single-trial MEG decoding suggest that DCT is a viable method comparing to standard methods and it improves decoding accuracy by preserving the dynamic patterns of signal in time, frequency and space domains.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this study, we propose the discrete cosine transform coefficients as a new and effective set of features for recognizing patterns of brain activity in MEG recording. We claim that computing DCT coefficients on the time-frequency representation of MEG signals is an efficient technique to reduce the dimensionality of feature space without losing discriminative power in brain decoding tasks. Our classification results on single-trial MEG decoding suggest that DCT is a viable method comparing to standard methods and it improves decoding accuracy by preserving the dynamic patterns of signal in time, frequency and space domains.
离散余弦变换在MEG信号解码中的应用
在这项研究中,我们提出离散余弦变换系数作为一组新的有效的特征来识别脑磁图记录中的脑活动模式。我们认为对脑电信号的时频表示计算DCT系数是一种有效的技术,可以在大脑解码任务中降低特征空间的维数而不失去判别能力。我们对单次MEG解码的分类结果表明,与标准方法相比,DCT是一种可行的方法,它通过保留信号在时间、频率和空间域的动态模式来提高解码精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信