Neural Network-based Model Predictive Control Approach for Modular Multilevel Converters

Hongjun Wang, Youjun Yue, Boao Sun, Hui Zhao
{"title":"Neural Network-based Model Predictive Control Approach for Modular Multilevel Converters","authors":"Hongjun Wang, Youjun Yue, Boao Sun, Hui Zhao","doi":"10.1109/ICECAI58670.2023.10176482","DOIUrl":null,"url":null,"abstract":"This paper proposes a neural network (NN) approach as an alternative to the computationally burdensome model predictive control (MPC) in controlling modular multilevel converters (MMCs). Simulation results demonstrate the effectiveness of our approach, with a back propagation (BP) neural network model successfully trained and the NN controller performing comparably to the MPC controller in suppressing circulating currents and stabilizing submodule voltages, while reducing the computational burden of the controller. Additionally, our approach provides an effective control solution for MMCs that can be implemented in real-time power electronic applications, and has important implications for power system optimization and future research in neural network control beyond MMCs.","PeriodicalId":189631,"journal":{"name":"2023 4th International Conference on Electronic Communication and Artificial Intelligence (ICECAI)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Electronic Communication and Artificial Intelligence (ICECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAI58670.2023.10176482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a neural network (NN) approach as an alternative to the computationally burdensome model predictive control (MPC) in controlling modular multilevel converters (MMCs). Simulation results demonstrate the effectiveness of our approach, with a back propagation (BP) neural network model successfully trained and the NN controller performing comparably to the MPC controller in suppressing circulating currents and stabilizing submodule voltages, while reducing the computational burden of the controller. Additionally, our approach provides an effective control solution for MMCs that can be implemented in real-time power electronic applications, and has important implications for power system optimization and future research in neural network control beyond MMCs.
基于神经网络的模块化多电平变换器模型预测控制方法
本文提出了一种神经网络(NN)方法,作为模块化多电平变换器(mmc)控制中计算量大的模型预测控制(MPC)的替代方法。仿真结果证明了该方法的有效性,成功训练了BP神经网络模型,并且NN控制器在抑制循环电流和稳定子模块电压方面的表现与MPC控制器相当,同时减少了控制器的计算负担。此外,我们的方法为mmc提供了一种有效的控制方案,可以在实时电力电子应用中实现,并且对电力系统优化和未来mmc以外的神经网络控制研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信