A novel approach for unsupervised learning of transaction data

M. PhridviRaj, C. V. Rao
{"title":"A novel approach for unsupervised learning of transaction data","authors":"M. PhridviRaj, C. V. Rao","doi":"10.1145/3330431.3330464","DOIUrl":null,"url":null,"abstract":"Incremental clustering is a technique which can be applied when the dataset is not constant and keeps updating. Normally when kmeans clustering is applied and if the dataset is modified then the clustering must be done from start. Similarly, for maximum capture procedure proposed in our previous research the clustering task must be carried from the start. In this paper, we propose an incremental approach for clustering transaction data which can be used for customer segmentation and other related applications. Experiments are conducted and three approaches are compared in terms of CPU utilization. It is observed that incremental approach required less CPU utilization.","PeriodicalId":196960,"journal":{"name":"Proceedings of the 5th International Conference on Engineering and MIS","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Engineering and MIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3330431.3330464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Incremental clustering is a technique which can be applied when the dataset is not constant and keeps updating. Normally when kmeans clustering is applied and if the dataset is modified then the clustering must be done from start. Similarly, for maximum capture procedure proposed in our previous research the clustering task must be carried from the start. In this paper, we propose an incremental approach for clustering transaction data which can be used for customer segmentation and other related applications. Experiments are conducted and three approaches are compared in terms of CPU utilization. It is observed that incremental approach required less CPU utilization.
交易数据无监督学习的新方法
增量聚类是一种适用于数据集不稳定且不断更新的聚类技术。通常,当应用kmeans聚类时,如果数据集被修改,则必须从头开始聚类。同样,对于我们之前的研究中提出的最大捕获过程,必须从一开始就进行聚类任务。在本文中,我们提出了一种增量的交易数据聚类方法,可用于客户细分和其他相关应用。通过实验对三种方法的CPU利用率进行了比较。可以观察到,增量方法需要更少的CPU利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信