Kalman Filter Using SOV Model with Maximum Versoria Criterion for Short-Term Traffic Flow Forecasting

Tingting Jiang, Zhao Zhang
{"title":"Kalman Filter Using SOV Model with Maximum Versoria Criterion for Short-Term Traffic Flow Forecasting","authors":"Tingting Jiang, Zhao Zhang","doi":"10.1145/3529570.3529579","DOIUrl":null,"url":null,"abstract":"This paper proposes a prediction method by combining second-order Volterra (SOV) model and Kalman filter to further improve prediction accuracy of the traditional Kalman model in short-term traffic flow forecasting. Nonlinear relationship may exist in traffic flow data, but the traditional Kalman model cannot deal with this problem. Due to the second-order Volterra (SOV) filter can deal with a general class of nonlinear systems, the traditional Kalman combines with second-order Volterra model, named SOV-KF model, is presented. Furthermore, since the Gaussian assumption is not always be fulfilled in the traffic flow data and traditional minimum mean square error (MMSE) criterion do not perform well under non-Gaussian noises. By introducing maximum Versoria criterion, another prediction method called SOV-MVKF model is also proposed. Simulation results show that the SOV-KF model and SOV-MVKF model provide higher prediction accuracy compared to traditional Kalman model.","PeriodicalId":430367,"journal":{"name":"Proceedings of the 6th International Conference on Digital Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529570.3529579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a prediction method by combining second-order Volterra (SOV) model and Kalman filter to further improve prediction accuracy of the traditional Kalman model in short-term traffic flow forecasting. Nonlinear relationship may exist in traffic flow data, but the traditional Kalman model cannot deal with this problem. Due to the second-order Volterra (SOV) filter can deal with a general class of nonlinear systems, the traditional Kalman combines with second-order Volterra model, named SOV-KF model, is presented. Furthermore, since the Gaussian assumption is not always be fulfilled in the traffic flow data and traditional minimum mean square error (MMSE) criterion do not perform well under non-Gaussian noises. By introducing maximum Versoria criterion, another prediction method called SOV-MVKF model is also proposed. Simulation results show that the SOV-KF model and SOV-MVKF model provide higher prediction accuracy compared to traditional Kalman model.
基于最大Versoria准则的SOV模型卡尔曼滤波短期交通流预测
本文提出了一种二阶Volterra (SOV)模型与卡尔曼滤波相结合的预测方法,进一步提高了传统卡尔曼模型在短期交通流预测中的预测精度。交通流数据中可能存在非线性关系,而传统的卡尔曼模型无法处理这一问题。由于二阶Volterra (SOV)滤波器可以处理一般的非线性系统,提出了传统的Kalman与二阶Volterra模型相结合的SOV- kf模型。此外,由于交通流数据并不总是满足高斯假设,传统的最小均方误差(MMSE)准则在非高斯噪声下表现不佳。通过引入最大Versoria准则,提出了另一种预测方法SOV-MVKF模型。仿真结果表明,与传统的卡尔曼模型相比,SOV-KF模型和SOV-MVKF模型具有更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信