{"title":"On the performance of UML state machine interpretation at runtime","authors":"Edzard Höfig, P. Deussen, I. Schieferdecker","doi":"10.1145/1988008.1988025","DOIUrl":null,"url":null,"abstract":"Modelling system behaviour by means of UML Behavioral State Machines is an established practice in software engineering. Usually, code generation is employed to create a system's software components. Although this approach yields software with a good runtime performance, the resulting system behaviour is static. Changes to the behaviour model necessarily provoke an iteration in the code generation workflow and a re-deployment of the generated artefacts. In the area of autonomic systems engineering, it is assumed that systems are able to adapt their runtime behaviour in response to a changing context. Thus, the constraints imposed by a code generation approach make runtime adaptation difficult, if not impossible. This article investigates a solution to this problem by employing interpretation techniques for the runtime execution of UML State Machines, enabling the adaptability of a system's runtime behaviour on the level of single model elements. This is done by devising concepts for behaviour model interpretation, which are then used in a proof-of-concept implementation to demonstrate the feasibility of the approach. For a quantitative evaluation we provide a performance comparison between the proof-of-concept implementation and generated code for a number of benchmark models. We find that UML State Machine interpretation has a performance overhead when compared with static code generation, but found it to be adequate for the majority of situations, except when dealing with high-throughput or delay-sensitive data.","PeriodicalId":168314,"journal":{"name":"International Symposium on Software Engineering for Adaptive and Self-Managing Systems","volume":"270 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Software Engineering for Adaptive and Self-Managing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1988008.1988025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Modelling system behaviour by means of UML Behavioral State Machines is an established practice in software engineering. Usually, code generation is employed to create a system's software components. Although this approach yields software with a good runtime performance, the resulting system behaviour is static. Changes to the behaviour model necessarily provoke an iteration in the code generation workflow and a re-deployment of the generated artefacts. In the area of autonomic systems engineering, it is assumed that systems are able to adapt their runtime behaviour in response to a changing context. Thus, the constraints imposed by a code generation approach make runtime adaptation difficult, if not impossible. This article investigates a solution to this problem by employing interpretation techniques for the runtime execution of UML State Machines, enabling the adaptability of a system's runtime behaviour on the level of single model elements. This is done by devising concepts for behaviour model interpretation, which are then used in a proof-of-concept implementation to demonstrate the feasibility of the approach. For a quantitative evaluation we provide a performance comparison between the proof-of-concept implementation and generated code for a number of benchmark models. We find that UML State Machine interpretation has a performance overhead when compared with static code generation, but found it to be adequate for the majority of situations, except when dealing with high-throughput or delay-sensitive data.