Random automatic detection of clusters

Mamta Mittal, V.P. Singh, Sharma R. K.
{"title":"Random automatic detection of clusters","authors":"Mamta Mittal, V.P. Singh, Sharma R. K.","doi":"10.1109/ICIIP.2011.6108856","DOIUrl":null,"url":null,"abstract":"Clustering is a way to partition the database in various groups. It is being used in data mining at a very large scale. There are different clustering methods but the focus in this paper is on partitioning based clustering. In literature many algorithm including k-Means are available that require prior information from the outside world about the number of clusters into which the database is to be divided. However, now days a database requires such algorithms that can generate different clusters automatically and moreover at each run the database requires to be partitioned into different number of clusters as well as different shape and size of grouping. In this paper a new partitioning based clustering algorithm that can generate clusters automatically without any previous knowledge on the user side has been proposed. The clusters so generated may not only differ in number but also will be of different shape and size.","PeriodicalId":201779,"journal":{"name":"2011 International Conference on Image Information Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Image Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIP.2011.6108856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Clustering is a way to partition the database in various groups. It is being used in data mining at a very large scale. There are different clustering methods but the focus in this paper is on partitioning based clustering. In literature many algorithm including k-Means are available that require prior information from the outside world about the number of clusters into which the database is to be divided. However, now days a database requires such algorithms that can generate different clusters automatically and moreover at each run the database requires to be partitioned into different number of clusters as well as different shape and size of grouping. In this paper a new partitioning based clustering algorithm that can generate clusters automatically without any previous knowledge on the user side has been proposed. The clusters so generated may not only differ in number but also will be of different shape and size.
随机自动检测集群
集群是一种将数据库划分为不同组的方法。它被大规模地用于数据挖掘。聚类方法有很多,但本文的重点是基于分区的聚类。在文献中,包括k-Means在内的许多算法都是可用的,这些算法需要从外界获得关于数据库要划分的聚类数量的先验信息。然而,现在数据库需要这样的算法,可以自动生成不同的集群,而且在每次运行数据库时,需要将数据库划分为不同数量的集群以及不同形状和大小的分组。本文提出了一种新的基于分区的聚类算法,该算法可以在不需要用户事先了解的情况下自动生成聚类。这样产生的群集不仅数量不同,而且形状和大小也不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信