{"title":"GENERALIZED FUNCTIONS ON A NON-ARCHIMEDEAN SUPERSPACE","authors":"A. Khrennikov","doi":"10.1070/IM1992V039N03ABEH002244","DOIUrl":null,"url":null,"abstract":"A theory is developed for superanalytic generalized functions on a superspace over a non-Archimedean Banach superalgebra with trivial annihilator of the odd part. A Gaussian distribution and the Volkenborn distribution are introduced on the non-Archimedean superspace. Existence and uniqueness theorems are proved for the Cauchy problem for linear differential equations with variable coefficients. The Cauchy problem for non-Archimedean superdiffusion, the Schrodinger equation, and the Schrodinger equation for supersymmetric quantum mechanics on a non-Archimedean Riemann surface are considered as applications.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1992V039N03ABEH002244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
A theory is developed for superanalytic generalized functions on a superspace over a non-Archimedean Banach superalgebra with trivial annihilator of the odd part. A Gaussian distribution and the Volkenborn distribution are introduced on the non-Archimedean superspace. Existence and uniqueness theorems are proved for the Cauchy problem for linear differential equations with variable coefficients. The Cauchy problem for non-Archimedean superdiffusion, the Schrodinger equation, and the Schrodinger equation for supersymmetric quantum mechanics on a non-Archimedean Riemann surface are considered as applications.