Driving scenario recognition for advanced hybrid electric vehicle control

A. Veeraraghavan, Ajinkya Bhave, V. Adithya, Yasunori Yokojima, Shingo Harada, S. Komori, Yasuhide Yano
{"title":"Driving scenario recognition for advanced hybrid electric vehicle control","authors":"A. Veeraraghavan, Ajinkya Bhave, V. Adithya, Yasunori Yokojima, Shingo Harada, S. Komori, Yasuhide Yano","doi":"10.1109/ITEC-INDIA.2017.8333828","DOIUrl":null,"url":null,"abstract":"Fuel consumption in a Hybrid Electric Vehicle (HEV) is typically impacted by powertrain operation modes, short- and long-term driving trend and style, and road type and traffic conditions. Typically, HEVs have rule-based supervisory control using heuristic logic. This approach works sub-optimally because it does not have knowledge of either road conditions or driving trends. We propose a machine learning approach to enhance the HEV controller performance. We create a Driving Scene Recognizer (DSR) that uses the contextual information available to recognize the current driving scenario. This information would be used by the supervisory controller to decide the optimal vehicle commands at each instant of the drive cycle. A hierarchical deep learning network is trained on videos of driving data and vehicle sensor data to classify typical driving scenarios. We demonstrate the performance of the DSR on real-world test data.","PeriodicalId":312418,"journal":{"name":"2017 IEEE Transportation Electrification Conference (ITEC-India)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Transportation Electrification Conference (ITEC-India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC-INDIA.2017.8333828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Fuel consumption in a Hybrid Electric Vehicle (HEV) is typically impacted by powertrain operation modes, short- and long-term driving trend and style, and road type and traffic conditions. Typically, HEVs have rule-based supervisory control using heuristic logic. This approach works sub-optimally because it does not have knowledge of either road conditions or driving trends. We propose a machine learning approach to enhance the HEV controller performance. We create a Driving Scene Recognizer (DSR) that uses the contextual information available to recognize the current driving scenario. This information would be used by the supervisory controller to decide the optimal vehicle commands at each instant of the drive cycle. A hierarchical deep learning network is trained on videos of driving data and vehicle sensor data to classify typical driving scenarios. We demonstrate the performance of the DSR on real-world test data.
高级混合动力汽车驾驶场景识别控制
混合动力电动汽车(HEV)的燃油消耗通常受到动力系统操作模式、短期和长期驾驶趋势和风格、道路类型和交通状况的影响。通常,混合动力汽车使用启发式逻辑具有基于规则的监督控制。这种方法的效果不是最优的,因为它既不了解路况,也不了解驾驶趋势。我们提出了一种机器学习方法来提高HEV控制器的性能。我们创建了一个驾驶场景识别器(DSR),它使用可用的上下文信息来识别当前的驾驶场景。监控控制器将使用这些信息来决定在驾驶周期的每个瞬间的最佳车辆命令。基于驾驶数据视频和车辆传感器数据训练分层深度学习网络,对典型驾驶场景进行分类。我们在真实的测试数据上展示了DSR的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信