{"title":"Efficacy of Non-Negative Matrix Factorization for Feature Selection in Cancer Data","authors":"Parth Patel, K. Passi, Chakresh Kumar Jain","doi":"10.5121/ijdkp.2020.10401","DOIUrl":null,"url":null,"abstract":"Over the past few years, there has been a considerable spread of micro-array technology in many biological patterns, particularly in those pertaining to cancer diseases like leukemia, prostate, colon cancer, etc. The primary bottleneck that one experiences in the proper understanding of such datasets lies in their dimensionality, and thus for an efficient and effective means of studying the same, a reduction in their dimension to a large extent is deemed necessary. This study is a bid to suggesting different algorithms and approaches for the reduction of dimensionality of such micro-array datasets.This study exploits the matrix-like structure of such micro-array data and uses a popular technique called Non-Negative Matrix Factorization (NMF) to reduce the dimensionality, primarily in the field of biological data. Classification accuracies are then compared for these algorithms.This technique gives an accuracy of 98%.","PeriodicalId":175553,"journal":{"name":"Informatics eJournal","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijdkp.2020.10401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Over the past few years, there has been a considerable spread of micro-array technology in many biological patterns, particularly in those pertaining to cancer diseases like leukemia, prostate, colon cancer, etc. The primary bottleneck that one experiences in the proper understanding of such datasets lies in their dimensionality, and thus for an efficient and effective means of studying the same, a reduction in their dimension to a large extent is deemed necessary. This study is a bid to suggesting different algorithms and approaches for the reduction of dimensionality of such micro-array datasets.This study exploits the matrix-like structure of such micro-array data and uses a popular technique called Non-Negative Matrix Factorization (NMF) to reduce the dimensionality, primarily in the field of biological data. Classification accuracies are then compared for these algorithms.This technique gives an accuracy of 98%.