{"title":"Minimal Proper Quasifields with Additional Conditions","authors":"O. Kravtsova","doi":"10.17516/1997-1397-2020-13-1-104-113","DOIUrl":null,"url":null,"abstract":"Received 10.10.2019, received in revised form 22.11.2019, accepted 26.12.2019 Abstract. We investigate the finite semifields which are distributive quasifields, and finite near-fields which are associative quasifields. A quasifield Q is said to be a minimal proper quasifield if any of its sub-quasifield H ̸= Q is a subfield. It turns out that there exists a minimal proper near-field such that its multiplicative group is a Miller–Moreno group. We obtain an algorithm for constructing a minimal proper near-field with the number of maximal subfields greater than fixed natural number. Thus, we find the answer to the question: Does there exist an integer N such that the number of maximal subfields in arbitrary finite near-field is less than N? We prove that any semifield of order p (p be prime) is a minimal proper semifield.","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-1-104-113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Received 10.10.2019, received in revised form 22.11.2019, accepted 26.12.2019 Abstract. We investigate the finite semifields which are distributive quasifields, and finite near-fields which are associative quasifields. A quasifield Q is said to be a minimal proper quasifield if any of its sub-quasifield H ̸= Q is a subfield. It turns out that there exists a minimal proper near-field such that its multiplicative group is a Miller–Moreno group. We obtain an algorithm for constructing a minimal proper near-field with the number of maximal subfields greater than fixed natural number. Thus, we find the answer to the question: Does there exist an integer N such that the number of maximal subfields in arbitrary finite near-field is less than N? We prove that any semifield of order p (p be prime) is a minimal proper semifield.