Online Estimation for Packet Loss Probability of MMPP/D/1 Queuing by Importance Sampling

Hung Nguyen Ngoc, K. Nakagawa
{"title":"Online Estimation for Packet Loss Probability of MMPP/D/1 Queuing by Importance Sampling","authors":"Hung Nguyen Ngoc, K. Nakagawa","doi":"10.1145/3287921.3287928","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method to estimate the packet loss probability of the MMPP/D/1 queuing system by Importance Sampling (IS). In order to estimate rare event we do not increase the arrival rate of traffic, but we decrease service rate of queuing packet. In [5], the authors also proposed an online estimation for the tail probability of FIFO queue length. However, the authors used arrival process is a Poisson process, it is simpler than MMPP arrival process in our method. Finally, we implement our algorithm and compare accuracy and simulation time of our experiments to the Monte Carlo method (MC) and conventional IS method.","PeriodicalId":448008,"journal":{"name":"Proceedings of the 9th International Symposium on Information and Communication Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287921.3287928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new method to estimate the packet loss probability of the MMPP/D/1 queuing system by Importance Sampling (IS). In order to estimate rare event we do not increase the arrival rate of traffic, but we decrease service rate of queuing packet. In [5], the authors also proposed an online estimation for the tail probability of FIFO queue length. However, the authors used arrival process is a Poisson process, it is simpler than MMPP arrival process in our method. Finally, we implement our algorithm and compare accuracy and simulation time of our experiments to the Monte Carlo method (MC) and conventional IS method.
基于重要性抽样的MMPP/D/1队列丢包概率在线估计
本文提出了一种利用重要性抽样(IS)估计MMPP/D/1排队系统丢包概率的新方法。为了估计罕见事件,我们不提高流量的到达率,但降低排队数据包的服务率。在[5]中,作者也提出了FIFO队列长度尾部概率的在线估计。然而,作者使用的到达过程是泊松过程,在我们的方法中比MMPP到达过程更简单。最后,我们实现了我们的算法,并将我们的实验精度和模拟时间与蒙特卡罗方法和传统的IS方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信