CSense: A stream-processing toolkit for robust and high-rate mobile sensing applications

Farley Lai, S. S. Hasan, Austin Laugesen, O. Chipara
{"title":"CSense: A stream-processing toolkit for robust and high-rate mobile sensing applications","authors":"Farley Lai, S. S. Hasan, Austin Laugesen, O. Chipara","doi":"10.1109/IPSN.2014.6846746","DOIUrl":null,"url":null,"abstract":"This paper presents CSense - a stream-processing toolkit for developing robust and high-rate mobile sensing application in Java. CSense addresses the needs of these systems by providing a new programming model that supports flexible application configuration, a high-level concurrency model, memory management, and compiler analyses and optimizations. Our compiler includes a novel flow analysis that optimizes the exchange of data across components from an application-wide perspective. A mobile sensing application benchmark indicates that flow analysis may reduce CPU utilization by as much as 45%. Static analysis is used to detect a range of programming errors including application composition errors, improper use of memory management, and data races. We identify that memory management and concurrency limit the scalability of stream processing systems. We incorporate memory pools, frame conversion optimizations, and custom synchronization primitives to develop a scalable run-time. CSense is evaluated on Galaxy Nexus phones running Android. Empirical results indicate that our run-time achieves 19 times higher steam processing rate compared to a realistic baseline implementation. We demonstrate the versatility of CSense by developing three mobile sensing applications.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2014.6846746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents CSense - a stream-processing toolkit for developing robust and high-rate mobile sensing application in Java. CSense addresses the needs of these systems by providing a new programming model that supports flexible application configuration, a high-level concurrency model, memory management, and compiler analyses and optimizations. Our compiler includes a novel flow analysis that optimizes the exchange of data across components from an application-wide perspective. A mobile sensing application benchmark indicates that flow analysis may reduce CPU utilization by as much as 45%. Static analysis is used to detect a range of programming errors including application composition errors, improper use of memory management, and data races. We identify that memory management and concurrency limit the scalability of stream processing systems. We incorporate memory pools, frame conversion optimizations, and custom synchronization primitives to develop a scalable run-time. CSense is evaluated on Galaxy Nexus phones running Android. Empirical results indicate that our run-time achieves 19 times higher steam processing rate compared to a realistic baseline implementation. We demonstrate the versatility of CSense by developing three mobile sensing applications.
CSense:一个流处理工具包,用于鲁棒和高速率移动传感应用
本文介绍了CSense -一个流处理工具包,用于在Java中开发鲁棒和高速率的移动传感应用程序。CSense通过提供一种新的编程模型来满足这些系统的需求,该模型支持灵活的应用程序配置、高级并发模型、内存管理以及编译器分析和优化。我们的编译器包括一个新颖的流分析,它从应用程序范围的角度优化了跨组件的数据交换。移动传感应用程序基准测试表明,流量分析可以将CPU利用率降低多达45%。静态分析用于检测一系列编程错误,包括应用程序组合错误、内存管理的不当使用和数据争用。我们发现内存管理和并发限制了流处理系统的可扩展性。我们结合了内存池、帧转换优化和自定义同步原语来开发可扩展的运行时。CSense是在运行安卓系统的Galaxy Nexus手机上进行评估的。实验结果表明,我们的运行时实现了比实际基线实现高19倍的蒸汽处理速率。我们通过开发三个移动传感应用来展示CSense的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信