{"title":"A super-resolution algorithm for multiband signal identification","authors":"Zhihui Zhu, Dehui Yang, M. Wakin, Gongguo Tang","doi":"10.1109/ACSSC.2017.8335193","DOIUrl":null,"url":null,"abstract":"Recent advances in convex optimization have led to super-resolution algorithms that provide exact frequency localization in multitone signals from limited time-domain samples. Such localization is accomplished by minimizing a certain atomic norm, which can be implemented in a semidefinite program. In this work, we consider the identification of multiband signals, which are comprised of multiple, unknown narrow bands of frequency content at multiple carrier frequencies. Integrating a basis of modulated discrete prolate spheroidal sequences (DPSS's) into the atomic norm minimization framework, we introduce a technique for estimating the unknown band positions based on limited time-domain samples of the signal.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Recent advances in convex optimization have led to super-resolution algorithms that provide exact frequency localization in multitone signals from limited time-domain samples. Such localization is accomplished by minimizing a certain atomic norm, which can be implemented in a semidefinite program. In this work, we consider the identification of multiband signals, which are comprised of multiple, unknown narrow bands of frequency content at multiple carrier frequencies. Integrating a basis of modulated discrete prolate spheroidal sequences (DPSS's) into the atomic norm minimization framework, we introduce a technique for estimating the unknown band positions based on limited time-domain samples of the signal.