A super-resolution algorithm for multiband signal identification

Zhihui Zhu, Dehui Yang, M. Wakin, Gongguo Tang
{"title":"A super-resolution algorithm for multiband signal identification","authors":"Zhihui Zhu, Dehui Yang, M. Wakin, Gongguo Tang","doi":"10.1109/ACSSC.2017.8335193","DOIUrl":null,"url":null,"abstract":"Recent advances in convex optimization have led to super-resolution algorithms that provide exact frequency localization in multitone signals from limited time-domain samples. Such localization is accomplished by minimizing a certain atomic norm, which can be implemented in a semidefinite program. In this work, we consider the identification of multiband signals, which are comprised of multiple, unknown narrow bands of frequency content at multiple carrier frequencies. Integrating a basis of modulated discrete prolate spheroidal sequences (DPSS's) into the atomic norm minimization framework, we introduce a technique for estimating the unknown band positions based on limited time-domain samples of the signal.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recent advances in convex optimization have led to super-resolution algorithms that provide exact frequency localization in multitone signals from limited time-domain samples. Such localization is accomplished by minimizing a certain atomic norm, which can be implemented in a semidefinite program. In this work, we consider the identification of multiband signals, which are comprised of multiple, unknown narrow bands of frequency content at multiple carrier frequencies. Integrating a basis of modulated discrete prolate spheroidal sequences (DPSS's) into the atomic norm minimization framework, we introduce a technique for estimating the unknown band positions based on limited time-domain samples of the signal.
一种多波段信号识别的超分辨率算法
凸优化的最新进展导致了超分辨率算法,从有限的时域样本中提供精确的多音信号频率定位。这种定位是通过最小化某种原子规范来实现的,这种原子规范可以在半确定的程序中实现。在这项工作中,我们考虑了多波段信号的识别,这些信号由多个载波频率上的多个未知窄带频率内容组成。在原子范数最小化框架中,引入了一种基于信号有限时域样本估计未知频带位置的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信