An analytical framework for particle and volume data of large-scale combustion simulations

F. Sauer, Hongfeng Yu, K. Ma
{"title":"An analytical framework for particle and volume data of large-scale combustion simulations","authors":"F. Sauer, Hongfeng Yu, K. Ma","doi":"10.1145/2535571.2535590","DOIUrl":null,"url":null,"abstract":"This paper presents a framework to enable parallel data analyses and visualizations that combine both Lagrangian particle data and Eulerian field data of large-scale combustion simulations. Our framework is characterized by a new range query based design that facilitates mutual queries between particles and volumetric segments. Scientists can extract complex features, such as vortical structures based on vector field classifications, and obtain detailed statistical information from the corresponding particle data. This framework also works in reverse as it can extract vector field information based on particle range queries. The effectiveness of our approach has been demonstrated by an experimental study on vector field data and particle data from a large-scale direct numerical simulation of a turbulent lifted ethylene jet flame. Our approach provides a foundation for scalable heterogeneous data analytics of large scientific applications.","PeriodicalId":262085,"journal":{"name":"Proceedings of the 8th International Workshop on Ultrascale Visualization","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Workshop on Ultrascale Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535571.2535590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a framework to enable parallel data analyses and visualizations that combine both Lagrangian particle data and Eulerian field data of large-scale combustion simulations. Our framework is characterized by a new range query based design that facilitates mutual queries between particles and volumetric segments. Scientists can extract complex features, such as vortical structures based on vector field classifications, and obtain detailed statistical information from the corresponding particle data. This framework also works in reverse as it can extract vector field information based on particle range queries. The effectiveness of our approach has been demonstrated by an experimental study on vector field data and particle data from a large-scale direct numerical simulation of a turbulent lifted ethylene jet flame. Our approach provides a foundation for scalable heterogeneous data analytics of large scientific applications.
大规模燃烧模拟中颗粒和体积数据的分析框架
本文提出了一个框架,使并行数据分析和可视化,结合了大规模燃烧模拟的拉格朗日粒子数据和欧拉场数据。我们的框架的特点是一个新的基于范围查询的设计,促进粒子和体积段之间的相互查询。科学家可以提取复杂的特征,如基于向量场分类的涡状结构,并从相应的粒子数据中获得详细的统计信息。这个框架也可以反向工作,因为它可以根据粒子范围查询提取向量场信息。本文方法的有效性已通过大规模直接数值模拟湍流提升乙烯射流火焰的矢量场数据和粒子数据的实验研究得到验证。我们的方法为大型科学应用的可扩展异构数据分析提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信