Achieving Speedups for Distributed Graph Biconnectivity

Ian Bogle, George M. Slota
{"title":"Achieving Speedups for Distributed Graph Biconnectivity","authors":"Ian Bogle, George M. Slota","doi":"10.1109/HPEC55821.2022.9926360","DOIUrl":null,"url":null,"abstract":"As data scales continue to increase, studying the porting and implementation of shared memory parallel algorithms for distributed memory architectures becomes increasingly important. We consider the problem of biconnectivity for this current study, which identifies cut vertices and cut edges in a graph. As part of our study, we implemented and optimized a shared memory biconnectivity algorithm based on color propagation within a distributed memory context. This algorithm is neither work nor time efficient. However, when we compare to distributed implementations of theoretically efficient algorithms, we find that simple non-optimal algorithms can greatly outperform time-efficient algorithms in practice when implemented for real distributed-memory environments and real data. Overall, our distributed implementation for computing graph biconnectivity demonstrates an average strong scaling speedup of 15 x across 64 MPI ranks on a suite of irregular real-world inputs. We also note an average of llx and 7.3x speedup relative to the optimal serial algorithm and fastest shared-memory implementation for the biconnectivity problem, respectively.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As data scales continue to increase, studying the porting and implementation of shared memory parallel algorithms for distributed memory architectures becomes increasingly important. We consider the problem of biconnectivity for this current study, which identifies cut vertices and cut edges in a graph. As part of our study, we implemented and optimized a shared memory biconnectivity algorithm based on color propagation within a distributed memory context. This algorithm is neither work nor time efficient. However, when we compare to distributed implementations of theoretically efficient algorithms, we find that simple non-optimal algorithms can greatly outperform time-efficient algorithms in practice when implemented for real distributed-memory environments and real data. Overall, our distributed implementation for computing graph biconnectivity demonstrates an average strong scaling speedup of 15 x across 64 MPI ranks on a suite of irregular real-world inputs. We also note an average of llx and 7.3x speedup relative to the optimal serial algorithm and fastest shared-memory implementation for the biconnectivity problem, respectively.
实现分布式图双连接的加速
随着数据规模的不断增加,研究面向分布式内存架构的共享内存并行算法的移植和实现变得越来越重要。在当前的研究中,我们考虑了双连通问题,即识别图中的切割顶点和切割边。作为我们研究的一部分,我们实现并优化了一个基于分布式内存上下文中颜色传播的共享内存双连接算法。这种算法既不省力也不省时。然而,当我们与理论上高效算法的分布式实现进行比较时,我们发现,在实际的分布式内存环境和真实数据中实现时,简单的非最优算法在实践中可以大大优于时间高效算法。总体而言,我们用于计算图形双连接的分布式实现在一套不规则的现实世界输入上,在64 MPI排名中显示了平均15倍的强大扩展加速。我们还注意到,对于双连接问题,相对于最优串行算法和最快共享内存实现,它们的平均加速分别为llx和7.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信