Research on distributed Hilbert R tree spatial index based on BIRCH clustering

Yizhou Yang, Lixin Wu, Jiateng Guo, Shanjun Liu
{"title":"Research on distributed Hilbert R tree spatial index based on BIRCH clustering","authors":"Yizhou Yang, Lixin Wu, Jiateng Guo, Shanjun Liu","doi":"10.1109/Geoinformatics.2012.6270302","DOIUrl":null,"url":null,"abstract":"Spatial index is the foundation of spatial database, while efficiency improvement of traditional serial spatial index has nearly reached its limit, it is therefore necessary to develop parallel spatial index approaches to break the bottleneck in accessing the root node in serial mode. This paper proposes a parallel spatial index called Hilbert R tree index, which can be carried on multicore CPU and computer cluster for parallel spatial queries and data retrieval. This new index method utilizes BIRCH clustering algorithm for spatial classification and data partition before distributed data deployment, considering geographic data characteristics; and creates spatial index in parallel environment by using of Hilbert filling curve. The test results demonstrate that parallel Hilbert R tree index based on BIRCH clustering algorithm can not only maintain internal spatial relations and the attributes of geographic dataset, but also has efficient performance in partitioning and retrieving spatial data.","PeriodicalId":259976,"journal":{"name":"2012 20th International Conference on Geoinformatics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Geoinformatics.2012.6270302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Spatial index is the foundation of spatial database, while efficiency improvement of traditional serial spatial index has nearly reached its limit, it is therefore necessary to develop parallel spatial index approaches to break the bottleneck in accessing the root node in serial mode. This paper proposes a parallel spatial index called Hilbert R tree index, which can be carried on multicore CPU and computer cluster for parallel spatial queries and data retrieval. This new index method utilizes BIRCH clustering algorithm for spatial classification and data partition before distributed data deployment, considering geographic data characteristics; and creates spatial index in parallel environment by using of Hilbert filling curve. The test results demonstrate that parallel Hilbert R tree index based on BIRCH clustering algorithm can not only maintain internal spatial relations and the attributes of geographic dataset, but also has efficient performance in partitioning and retrieving spatial data.
基于BIRCH聚类的分布式Hilbert R树空间索引研究
空间索引是空间数据库的基础,传统的序列空间索引的效率提升已经接近极限,因此有必要开发并行空间索引方法来打破以序列方式访问根节点的瓶颈。提出了一种可在多核CPU和计算机集群上并行执行的Hilbert R树索引,用于并行空间查询和数据检索。该方法考虑地理数据的特点,在分布式数据部署前利用BIRCH聚类算法进行空间分类和数据分区;利用希尔伯特填充曲线在平行环境中创建空间索引。实验结果表明,基于BIRCH聚类算法的并行Hilbert R树索引不仅能够维护地理数据集的内部空间关系和属性,而且在空间数据分区和检索方面具有高效的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信