G. B. Vitor, Danilo Alves de Lima, A. Victorino, J. V. Ferreira
{"title":"A 2D/3D Vision Based Approach Applied to Road Detection in Urban Environments","authors":"G. B. Vitor, Danilo Alves de Lima, A. Victorino, J. V. Ferreira","doi":"10.1109/IVS.2013.6629589","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for road detection based on image segmentation. This segmentation is resulted from merging 2D and 3D image processing data from a stereo vision system. The 2D layer returns a matrix containing pixel's clusters based on the Watershed transform. Whereas the 3D layer return labels, that are classified by the V-Disparity technique, to free spaces, obstacles and non-classified area. Thus, a feature's descriptor for each cluster is composed with features from both layers. The road pattern recognition was performed by an artificial neural network, trained to obtain a final result from this feature's descriptor. The proposed work reports real experiments carried out in a challenging urban environment to illustrate the validity and application of this approach.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
This paper presents an approach for road detection based on image segmentation. This segmentation is resulted from merging 2D and 3D image processing data from a stereo vision system. The 2D layer returns a matrix containing pixel's clusters based on the Watershed transform. Whereas the 3D layer return labels, that are classified by the V-Disparity technique, to free spaces, obstacles and non-classified area. Thus, a feature's descriptor for each cluster is composed with features from both layers. The road pattern recognition was performed by an artificial neural network, trained to obtain a final result from this feature's descriptor. The proposed work reports real experiments carried out in a challenging urban environment to illustrate the validity and application of this approach.