{"title":"Tolerating faults in a mesh with a row of spare nodes","authors":"Jehoshua Bruck, R. Cypher, C. T. Ho","doi":"10.1109/SPDP.1992.242768","DOIUrl":null,"url":null,"abstract":"The authors present an efficient method for tolerating faults in a two-dimensional mesh architecture. The approach is based on adding spare components (nodes) and extra links (edges) such that the resulting architecture can be reconfigured as a mesh in the presence of faults. The cost of the fault-tolerant mesh architecture is optimized by adding about one row of redundant nodes in addition to a set of k spare nodes (while tolerating up to k node faults) and minimizing the number of links per node. The results are surprisingly efficient and seem to be practical for small values of k. The degree of the fault-tolerant architecture is k+5 for odd k, and k+6 for even k. The results can be generalized to d-dimensional meshes such that the number of spare nodes is less than the length of the shortest axis plus k, and the degree of the fault-tolerant mesh is (d-1)k+d+3 when k is odd and (d-1)k+2d+2 when k is even.<<ETX>>","PeriodicalId":265469,"journal":{"name":"[1992] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPDP.1992.242768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
The authors present an efficient method for tolerating faults in a two-dimensional mesh architecture. The approach is based on adding spare components (nodes) and extra links (edges) such that the resulting architecture can be reconfigured as a mesh in the presence of faults. The cost of the fault-tolerant mesh architecture is optimized by adding about one row of redundant nodes in addition to a set of k spare nodes (while tolerating up to k node faults) and minimizing the number of links per node. The results are surprisingly efficient and seem to be practical for small values of k. The degree of the fault-tolerant architecture is k+5 for odd k, and k+6 for even k. The results can be generalized to d-dimensional meshes such that the number of spare nodes is less than the length of the shortest axis plus k, and the degree of the fault-tolerant mesh is (d-1)k+d+3 when k is odd and (d-1)k+2d+2 when k is even.<>