W. Jung, J. Son, J. Hwang, B. Paulson, Byungjoo Kong, Sung Ha Park, K. Oh
{"title":"Light transmission with self-assembly DNA monolayers through D-shaped optical fiber","authors":"W. Jung, J. Son, J. Hwang, B. Paulson, Byungjoo Kong, Sung Ha Park, K. Oh","doi":"10.1117/12.2061620","DOIUrl":null,"url":null,"abstract":"Deoxyribonucleic acid (DNA) has been a remarkable material in the development of optoelectronic devices for granted these days. In this research, we report on an optical phenomenon of DNA structures grown by a self-assembly process. Discrete 2D nanocrystal structures of DNA were prepared on a light-guiding substrate. The high evanescent field interaction between the guided light supplied via D-shaped optical fiber and DNA monolayers enabled the systematic investigating of the optical properties of DNA nanocrystal structures. In particular, light guided down the fiber and received by an optical spectrum analyzer enabled spectral analysis, while morphology studies of the self-assembly DNA were performed by atomic force microscopy.","PeriodicalId":358951,"journal":{"name":"Optics & Photonics - Photonic Devices + Applications","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Photonics - Photonic Devices + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2061620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deoxyribonucleic acid (DNA) has been a remarkable material in the development of optoelectronic devices for granted these days. In this research, we report on an optical phenomenon of DNA structures grown by a self-assembly process. Discrete 2D nanocrystal structures of DNA were prepared on a light-guiding substrate. The high evanescent field interaction between the guided light supplied via D-shaped optical fiber and DNA monolayers enabled the systematic investigating of the optical properties of DNA nanocrystal structures. In particular, light guided down the fiber and received by an optical spectrum analyzer enabled spectral analysis, while morphology studies of the self-assembly DNA were performed by atomic force microscopy.