Radius vs diameter

K. Goebel, S. Prus
{"title":"Radius vs diameter","authors":"K. Goebel, S. Prus","doi":"10.1093/oso/9780198827351.003.0008","DOIUrl":null,"url":null,"abstract":"The subject of the chapter is the relationship between the (Chebyshev) radius and diameter of convex bounded sets. The main tool is the Jung coefficient. Diametral sets and normal structure in connection with the fixed point theory for nonexpansive mappings are presented.","PeriodicalId":417325,"journal":{"name":"Elements of Geometry of Balls in Banach Spaces","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elements of Geometry of Balls in Banach Spaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198827351.003.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The subject of the chapter is the relationship between the (Chebyshev) radius and diameter of convex bounded sets. The main tool is the Jung coefficient. Diametral sets and normal structure in connection with the fixed point theory for nonexpansive mappings are presented.
半径与直径
本章的主题是凸有界集的Chebyshev半径和直径之间的关系。主要的工具是荣格系数。利用非膨胀映射的不动点理论,给出了非膨胀映射的直径集和正规结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信