Unsupervised Open-domain Keyphrase Generation

Lam Thanh Do, Pritom Saha Akash, K. Chang
{"title":"Unsupervised Open-domain Keyphrase Generation","authors":"Lam Thanh Do, Pritom Saha Akash, K. Chang","doi":"10.48550/arXiv.2306.10755","DOIUrl":null,"url":null,"abstract":"In this work, we study the problem of unsupervised open-domain keyphrase generation, where the objective is a keyphrase generation model that can be built without using human-labeled data and can perform consistently across domains. To solve this problem, we propose a seq2seq model that consists of two modules, namely phraseness and informativeness module, both of which can be built in an unsupervised and open-domain fashion. The phraseness module generates phrases, while the informativeness module guides the generation towards those that represent the core concepts of the text. We thoroughly evaluate our proposed method using eight benchmark datasets from different domains. Results on in-domain datasets show that our approach achieves state-of-the-art results compared with existing unsupervised models, and overall narrows the gap between supervised and unsupervised methods down to about 16%. Furthermore, we demonstrate that our model performs consistently across domains, as it surpasses the baselines on out-of-domain datasets.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.10755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the problem of unsupervised open-domain keyphrase generation, where the objective is a keyphrase generation model that can be built without using human-labeled data and can perform consistently across domains. To solve this problem, we propose a seq2seq model that consists of two modules, namely phraseness and informativeness module, both of which can be built in an unsupervised and open-domain fashion. The phraseness module generates phrases, while the informativeness module guides the generation towards those that represent the core concepts of the text. We thoroughly evaluate our proposed method using eight benchmark datasets from different domains. Results on in-domain datasets show that our approach achieves state-of-the-art results compared with existing unsupervised models, and overall narrows the gap between supervised and unsupervised methods down to about 16%. Furthermore, we demonstrate that our model performs consistently across domains, as it surpasses the baselines on out-of-domain datasets.
无监督开放域关键字生成
在这项工作中,我们研究了无监督开放域关键字生成问题,其目标是一个关键字生成模型,该模型可以在不使用人工标记数据的情况下构建,并且可以跨域一致地执行。为了解决这个问题,我们提出了一个seq2seq模型,该模型由短语性和信息性两个模块组成,这两个模块都可以以无监督和开放域的方式构建。短语模块生成短语,信息性模块引导生成代表文本核心概念的短语。我们使用来自不同领域的八个基准数据集彻底评估了我们提出的方法。在域内数据集上的结果表明,与现有的无监督模型相比,我们的方法取得了最先进的结果,并且总体上将监督和无监督方法之间的差距缩小了16%左右。此外,我们证明了我们的模型跨域执行一致,因为它超过了域外数据集的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信