{"title":"Laser radar and visible light in a bidirectional V2V communication and ranging system","authors":"A. Suzuki, K. Mizui","doi":"10.1109/ICVES.2015.7396887","DOIUrl":null,"url":null,"abstract":"In autonomous vehicles, driving in traffic poses significant challenges in vehicle-to-vehicle (V2V) communication and ranging. Currently interest centers on enhanced V2V communication with multi-sensor and cooperative approaches. In this paper we propose a novel bidirectional Laser Radar Visible Light Bidirectional Communication Boomerang System (LRVLB-ComBo). LRVLB-ComBo affords nuanced real-time two-way V2V communication as a basis for complex but reliable decision-making. Our approach involves combining existing automotive laser radar with visible light boomerang systems using Time Hopping Spread Spectrum techniques. System simulations were performed using a random mix of extraneous interference pulse to evaluate system sensitivity to noise. Results suggest that LRVLB-ComBo is a viable two-way V2V communication system with increased ranging accuracy, enabling provision of detailed bidirectional data exchange for ITS precision, energy efficiency and safety.","PeriodicalId":325462,"journal":{"name":"2015 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2015.7396887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
In autonomous vehicles, driving in traffic poses significant challenges in vehicle-to-vehicle (V2V) communication and ranging. Currently interest centers on enhanced V2V communication with multi-sensor and cooperative approaches. In this paper we propose a novel bidirectional Laser Radar Visible Light Bidirectional Communication Boomerang System (LRVLB-ComBo). LRVLB-ComBo affords nuanced real-time two-way V2V communication as a basis for complex but reliable decision-making. Our approach involves combining existing automotive laser radar with visible light boomerang systems using Time Hopping Spread Spectrum techniques. System simulations were performed using a random mix of extraneous interference pulse to evaluate system sensitivity to noise. Results suggest that LRVLB-ComBo is a viable two-way V2V communication system with increased ranging accuracy, enabling provision of detailed bidirectional data exchange for ITS precision, energy efficiency and safety.