A. Dixit, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, P. Demeester
{"title":"Towards energy efficiency in optical access networks [Invited]","authors":"A. Dixit, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, P. Demeester","doi":"10.1109/ANTS.2013.6802896","DOIUrl":null,"url":null,"abstract":"A continual increase in bandwidth consumption stimulates the need for next generation optical access (NGOA) networks, which should also conform to the societal green agenda. Currently, the access segment consumes a major fraction (about 67%) of the energy consumption in end-to-end fiber-to-the-home (FTTH) based telecommunication networks, and thus the energy consumption of access networks remains a crucial concern. In this paper, we present a thorough analysis of energy consumption in various NGOA technologies. In this analysis, we have also accounted the effects of low power modes (e.g., sleep modes) and the use of optimal split ratios for the considered technologies on the energy consumption.","PeriodicalId":286834,"journal":{"name":"2013 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTS.2013.6802896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
A continual increase in bandwidth consumption stimulates the need for next generation optical access (NGOA) networks, which should also conform to the societal green agenda. Currently, the access segment consumes a major fraction (about 67%) of the energy consumption in end-to-end fiber-to-the-home (FTTH) based telecommunication networks, and thus the energy consumption of access networks remains a crucial concern. In this paper, we present a thorough analysis of energy consumption in various NGOA technologies. In this analysis, we have also accounted the effects of low power modes (e.g., sleep modes) and the use of optimal split ratios for the considered technologies on the energy consumption.