Non-parametric estimation of integral probability metrics

Bharath K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Scholkopf, Gert R. G. Lanckriet
{"title":"Non-parametric estimation of integral probability metrics","authors":"Bharath K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Scholkopf, Gert R. G. Lanckriet","doi":"10.1109/ISIT.2010.5513626","DOIUrl":null,"url":null,"abstract":"In this paper, we develop and analyze a nonparametric method for estimating the class of integral probability metrics (IPMs), examples of which include the Wasserstein distance, Dudley metric, and maximum mean discrepancy (MMD). We show that these distances can be estimated efficiently by solving a linear program in the case of Wasserstein distance and Dudley metric, while MMD is computable in a closed form. All these estimators are shown to be strongly consistent and their convergence rates are analyzed. Based on these results, we show that IPMs are simple to estimate and the estimators exhibit good convergence behavior compared to ø-divergence estimators.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

In this paper, we develop and analyze a nonparametric method for estimating the class of integral probability metrics (IPMs), examples of which include the Wasserstein distance, Dudley metric, and maximum mean discrepancy (MMD). We show that these distances can be estimated efficiently by solving a linear program in the case of Wasserstein distance and Dudley metric, while MMD is computable in a closed form. All these estimators are shown to be strongly consistent and their convergence rates are analyzed. Based on these results, we show that IPMs are simple to estimate and the estimators exhibit good convergence behavior compared to ø-divergence estimators.
积分概率度量的非参数估计
在本文中,我们发展并分析了一种非参数方法来估计一类积分概率度量(ipm),其中包括Wasserstein距离、Dudley度量和最大平均差异(MMD)。我们证明了在Wasserstein距离和Dudley度量的情况下,这些距离可以通过求解线性规划来有效地估计,而MMD可以以封闭形式计算。证明了这些估计是强一致的,并分析了它们的收敛速度。基于这些结果,我们表明ipm的估计很简单,并且与ø-散度估计量相比,估计量具有良好的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信