Active Task-Space Sensing and Localization of Autonomous Vehicles

G. Nejat, B. Benhabib, A. Membre
{"title":"Active Task-Space Sensing and Localization of Autonomous Vehicles","authors":"G. Nejat, B. Benhabib, A. Membre","doi":"10.1109/ROBOT.2005.1570695","DOIUrl":null,"url":null,"abstract":"In this paper, an active line-of-sight-sensing (LOS) methodology is proposed for the docking of autonomous vehicles/robotic end-effectors. The novelty of the overall system is its applicability to cases that do not allow for the direct proximity measurement of the vehicle's pose (position and orientation). In such instances, a guidance-based technique must be employed to move the vehicle to its desired pose using corrective actions at the final stages of its motion. The objective of the proposed guidance method is, thus, to successfully minimize the systematic errors of the vehicle, accumulated after a long-range motion, while allowing it to converge within the random noise limits via a three-step procedure: active LOS realignment, determination of the new (actual) location of the vehicle, and implementation of a corrective action. The proposed system was successfully tested via simulation for a three degree-of-freedom (dof) planar robotic platform and via experiments.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"275 19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, an active line-of-sight-sensing (LOS) methodology is proposed for the docking of autonomous vehicles/robotic end-effectors. The novelty of the overall system is its applicability to cases that do not allow for the direct proximity measurement of the vehicle's pose (position and orientation). In such instances, a guidance-based technique must be employed to move the vehicle to its desired pose using corrective actions at the final stages of its motion. The objective of the proposed guidance method is, thus, to successfully minimize the systematic errors of the vehicle, accumulated after a long-range motion, while allowing it to converge within the random noise limits via a three-step procedure: active LOS realignment, determination of the new (actual) location of the vehicle, and implementation of a corrective action. The proposed system was successfully tested via simulation for a three degree-of-freedom (dof) planar robotic platform and via experiments.
主动任务空间感知与自动驾驶汽车定位
提出了一种用于自动驾驶车辆/机器人末端执行器对接的主动视距传感(LOS)方法。整个系统的新颖之处在于它适用于不允许对车辆姿态(位置和方向)进行直接接近测量的情况。在这种情况下,必须采用基于引导的技术,在其运动的最后阶段使用纠正动作将车辆移动到所需的姿势。因此,所提出的制导方法的目标是成功地将远程运动后积累的飞行器的系统误差最小化,同时允许它通过三步程序在随机噪声限制内收敛:主动LOS重新定位,确定飞行器的新(实际)位置,并实施纠正措施。通过三自由度平面机器人平台的仿真和实验验证了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信