Enhanced target extraction in strong clutter scene

Jialian Sheng, G. Jing, M. Xing
{"title":"Enhanced target extraction in strong clutter scene","authors":"Jialian Sheng, G. Jing, M. Xing","doi":"10.1109/IAEAC.2015.7428585","DOIUrl":null,"url":null,"abstract":"Clutter suppression is always problematic in synthetic aperture radar (SAR) imaging. Especially when clutter is strong, inappropriate threshold on image amplitude may lead to failure to completely separate the background and the region of interest (ROI). Therefore, this paper firstly presents an adaptive threshold estimation method from the view of coherence. To protect weak scatterers, neighbored points around the extracted centers are also preserved. With the strong sparsity of the ROI in the image, the resolution of the extracted target region is enhanced by the sparse signal processing technique. Experimental results on simulated and real data both confirm its practicability.","PeriodicalId":398100,"journal":{"name":"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2015.7428585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clutter suppression is always problematic in synthetic aperture radar (SAR) imaging. Especially when clutter is strong, inappropriate threshold on image amplitude may lead to failure to completely separate the background and the region of interest (ROI). Therefore, this paper firstly presents an adaptive threshold estimation method from the view of coherence. To protect weak scatterers, neighbored points around the extracted centers are also preserved. With the strong sparsity of the ROI in the image, the resolution of the extracted target region is enhanced by the sparse signal processing technique. Experimental results on simulated and real data both confirm its practicability.
增强了强杂波场景下的目标提取
杂波抑制一直是合成孔径雷达(SAR)成像中的难题。特别是在杂波较强的情况下,不适当的图像幅度阈值可能导致背景和感兴趣区域(ROI)不能完全分离。因此,本文首先从相干性的角度提出了一种自适应阈值估计方法。为了保护弱散射体,提取中心周围的邻近点也被保留。利用图像中感兴趣区域的强稀疏性,通过稀疏信号处理技术提高提取目标区域的分辨率。仿真和实际数据的实验结果都证实了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信