Tail Risk Monotonicity Under Temporal Aggregation in GARCH(1,1) Models

P. Glasserman, D. Pirjol, Qi Wu
{"title":"Tail Risk Monotonicity Under Temporal Aggregation in GARCH(1,1) Models","authors":"P. Glasserman, D. Pirjol, Qi Wu","doi":"10.2139/ssrn.3502425","DOIUrl":null,"url":null,"abstract":"The stationary distribution of a GARCH(1,1) process has a power law decay, under broadly applicable conditions. We study the change in the exponent of the tail decay under temporal aggregation of parameters, with the distribution of innovations held fixed. The parameter transformation we study results from approximating a GARCH process observed at one frequency with another observed at a lower frequency. We derive conditions under which the tail exponent increases under temporal aggregation, and these conditions cover most relevant combinations of parameters and innovation distributions. But we also prove the existence of counterexamples near the boundary of the admissible parameter regions where monotonicity fails. These counterexamples include several standard choices for innovation distributions, including the normal case.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3502425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The stationary distribution of a GARCH(1,1) process has a power law decay, under broadly applicable conditions. We study the change in the exponent of the tail decay under temporal aggregation of parameters, with the distribution of innovations held fixed. The parameter transformation we study results from approximating a GARCH process observed at one frequency with another observed at a lower frequency. We derive conditions under which the tail exponent increases under temporal aggregation, and these conditions cover most relevant combinations of parameters and innovation distributions. But we also prove the existence of counterexamples near the boundary of the admissible parameter regions where monotonicity fails. These counterexamples include several standard choices for innovation distributions, including the normal case.
GARCH(1,1)模型时间聚集下的尾部风险单调性
在广泛适用的条件下,GARCH(1,1)过程的平稳分布具有幂律衰减。我们研究了在创新分布固定的情况下,参数随时间聚集的尾部衰减指数的变化。我们研究的参数变换是将一个频率观测到的GARCH过程近似为另一个低频观测到的GARCH过程。我们推导了尾指数在时间聚合下增加的条件,这些条件涵盖了参数和创新分布的最相关组合。但我们也证明了在可容许参数区域边界附近的反例的存在性。这些反例包括创新分布的几个标准选择,包括正常情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信