Cloud-native Service Function Chaining for 5G based on Network Service Mesh

Boutheina Dab, Ilhem Fajjari, Mathieu Rohon, Cyril Auboin, Arnaud Diquélou
{"title":"Cloud-native Service Function Chaining for 5G based on Network Service Mesh","authors":"Boutheina Dab, Ilhem Fajjari, Mathieu Rohon, Cyril Auboin, Arnaud Diquélou","doi":"10.1109/ICC40277.2020.9149045","DOIUrl":null,"url":null,"abstract":"5G will provide a flexible and programmable infrastructure, allowing different networks to share the same access network. A way to respond to the diverse service requirements of 5G while reducing both CAPEX and OPEX is to adopt cloud-native architectures. In this context, micro-services software design, the corner stone of cloud-native architecture, seems to be ideal for 5G. However, despite its several advantages, micro-services raise new challenges which slow its adoption down in the NFV ecosystem. Indeed, steering the expected 5G traffic between cloud-native network function is extremely challenging and is still under-investigated. In this paper, we address the service function chaining (SFC) in micro-service based network function virtualization (NFV) ecosystem from the view of the traffic steering. Specifically, we design and implement a cloud-native SFC framework offering efficient traffic steering mechanisms while considering the network state of the underlying NFV infrastructure. In this context, an optimized network-aware load balancing strategy is proposed. Based on extensive experiments, the results obtained show that our strategy achieved good results in terms of i) end-to-end latency and ii) deployment time.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC40277.2020.9149045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

5G will provide a flexible and programmable infrastructure, allowing different networks to share the same access network. A way to respond to the diverse service requirements of 5G while reducing both CAPEX and OPEX is to adopt cloud-native architectures. In this context, micro-services software design, the corner stone of cloud-native architecture, seems to be ideal for 5G. However, despite its several advantages, micro-services raise new challenges which slow its adoption down in the NFV ecosystem. Indeed, steering the expected 5G traffic between cloud-native network function is extremely challenging and is still under-investigated. In this paper, we address the service function chaining (SFC) in micro-service based network function virtualization (NFV) ecosystem from the view of the traffic steering. Specifically, we design and implement a cloud-native SFC framework offering efficient traffic steering mechanisms while considering the network state of the underlying NFV infrastructure. In this context, an optimized network-aware load balancing strategy is proposed. Based on extensive experiments, the results obtained show that our strategy achieved good results in terms of i) end-to-end latency and ii) deployment time.
基于Network Service Mesh的5G云原生业务功能链
5G将提供灵活和可编程的基础设施,允许不同的网络共享相同的接入网。在降低资本支出和运营支出的同时,应对5G多样化服务需求的一种方法是采用云原生架构。在这种背景下,微服务软件设计,云原生架构的基石,似乎是5G的理想选择。然而,尽管微服务具有诸多优势,但它也带来了新的挑战,减缓了其在NFV生态系统中的应用。事实上,在云原生网络功能之间引导预期的5G流量是极具挑战性的,而且仍未得到充分研究。本文从流量导向的角度研究了基于微服务的网络功能虚拟化(NFV)生态系统中的业务功能链问题。具体来说,我们设计并实现了一个云原生SFC框架,在考虑底层NFV基础设施的网络状态的同时,提供了有效的流量转向机制。在此背景下,提出了一种优化的网络感知负载均衡策略。经过大量的实验,结果表明我们的策略在i)端到端延迟和ii)部署时间方面取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信