Parameter estimation and applications of a class of Gaussian image models

G. Dattatreya, Xiaori Fang
{"title":"Parameter estimation and applications of a class of Gaussian image models","authors":"G. Dattatreya, Xiaori Fang","doi":"10.1109/IAI.1994.336689","DOIUrl":null,"url":null,"abstract":"This paper discusses variations of a model of images and develops algorithms for estimation of all the parameters from the raw image data. The model is suitable for some cases of (1) lossy image compression and realistic reconstruction, (2) texture synthesis and identification, (3) classification of remotely sensed data, and (4) analysis of medical images. Each pixel in the image is modeled as an element of a set of very few known intensity levels (henceforth called pixel-classes) plus an independent zero mean Gaussian random variable. Different statistical structures in the two dimensional lattice of pixel-classes lead to variations in the model. The image representation problem corresponds to estimation of the parameters of the discrete random field formed by the pixel classes, and the parameters of the additive Gaussian field. The authors discuss variations of the model and corresponding applications, and develop convergent estimators for all parameters.<<ETX>>","PeriodicalId":438137,"journal":{"name":"Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"460 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.1994.336689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses variations of a model of images and develops algorithms for estimation of all the parameters from the raw image data. The model is suitable for some cases of (1) lossy image compression and realistic reconstruction, (2) texture synthesis and identification, (3) classification of remotely sensed data, and (4) analysis of medical images. Each pixel in the image is modeled as an element of a set of very few known intensity levels (henceforth called pixel-classes) plus an independent zero mean Gaussian random variable. Different statistical structures in the two dimensional lattice of pixel-classes lead to variations in the model. The image representation problem corresponds to estimation of the parameters of the discrete random field formed by the pixel classes, and the parameters of the additive Gaussian field. The authors discuss variations of the model and corresponding applications, and develop convergent estimators for all parameters.<>
一类高斯图像模型的参数估计及其应用
本文讨论了图像模型的变化,并开发了从原始图像数据估计所有参数的算法。该模型适用于(1)有损图像压缩与逼真重建,(2)纹理合成与识别,(3)遥感数据分类,(4)医学图像分析。图像中的每个像素被建模为一组很少的已知强度水平(以后称为像素类)的元素,加上一个独立的零均值高斯随机变量。在像素类的二维晶格中,不同的统计结构导致模型的变化。图像表示问题对应于由像素类构成的离散随机场的参数估计和加性高斯场的参数估计。作者讨论了模型的变化和相应的应用,并开发了所有参数的收敛估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信