A Hybrid CNN-LSTM Model for IIoT Edge Privacy-Aware Intrusion Detection

Erik Miguel de Elias, Vinicius Sanches Carriel, Guilherme Werneck de Oliveira, A. Santos, M. N. Lima, Roberto Hirata Junior, D. Batista
{"title":"A Hybrid CNN-LSTM Model for IIoT Edge Privacy-Aware Intrusion Detection","authors":"Erik Miguel de Elias, Vinicius Sanches Carriel, Guilherme Werneck de Oliveira, A. Santos, M. N. Lima, Roberto Hirata Junior, D. Batista","doi":"10.1109/LATINCOM56090.2022.10000468","DOIUrl":null,"url":null,"abstract":"Security is a critical issue in the context of IoT and, more recently, of Industrial IoT(IIoT) environments. To mitigate security threats, Intrusion Detection Systems have been proposed. Still, most of them can achieve high accuracy only by having access to the application layer of the flows, which is problematic in terms of privacy. This paper presents a neural network model based on a hybrid CNN-LSTM architecture to detect several attacks in the network traffic at the Edge of IIoT using only features from the transport and network layers. Besides improving privacy, the proposal achieves 97.85% average accuracy when classifying the traffic as benign or malicious and 97.14% average accuracy when classifying 15 specific attacks in a dataset containing IIoT traffic. Moreover, all the code produced is available as free software, facilitating new studies and the reproduction of the experiments.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Security is a critical issue in the context of IoT and, more recently, of Industrial IoT(IIoT) environments. To mitigate security threats, Intrusion Detection Systems have been proposed. Still, most of them can achieve high accuracy only by having access to the application layer of the flows, which is problematic in terms of privacy. This paper presents a neural network model based on a hybrid CNN-LSTM architecture to detect several attacks in the network traffic at the Edge of IIoT using only features from the transport and network layers. Besides improving privacy, the proposal achieves 97.85% average accuracy when classifying the traffic as benign or malicious and 97.14% average accuracy when classifying 15 specific attacks in a dataset containing IIoT traffic. Moreover, all the code produced is available as free software, facilitating new studies and the reproduction of the experiments.
工业物联网边缘隐私感知入侵检测的CNN-LSTM混合模型
在物联网以及最近的工业物联网(IIoT)环境中,安全是一个关键问题。为了减轻安全威胁,入侵检测系统被提出。尽管如此,它们中的大多数只能通过访问流的应用层来实现高精度,这在隐私方面是有问题的。本文提出了一种基于CNN-LSTM混合架构的神经网络模型,仅使用传输层和网络层的特征来检测工业物联网边缘网络流量中的几种攻击。除了提高隐私性外,该方案在将流量分类为良性或恶意时的平均准确率为97.85%,在包含IIoT流量的数据集中对15种特定攻击进行分类时的平均准确率为97.14%。此外,所有生成的代码都可以作为免费软件提供,这有助于新的研究和实验的复制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信