Model based classification of transient signals using the MLANS neural network

L. Perlovsky
{"title":"Model based classification of transient signals using the MLANS neural network","authors":"L. Perlovsky","doi":"10.1109/ICNN.1991.163357","DOIUrl":null,"url":null,"abstract":"A maximum likelihood artificial neural system (MLANS) neural network is proposed for transient signal recognition. The MLANS learning efficiency greatly exceeds that of other neural networks and is approaching the information-theoretical limit on performance of any neural network or algorithm. The MLANS operates on a two-dimensional representation of the signal in either the short-term spectral or the Wigner transform domain. The first layer of the network uses structured second-order neurons to estimate the signal model from training data. A second layer performs optimal multimodal Bayes classification. Learning efficiency approaching the information-theoretical limit is achieved in each layer of the MLANS.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A maximum likelihood artificial neural system (MLANS) neural network is proposed for transient signal recognition. The MLANS learning efficiency greatly exceeds that of other neural networks and is approaching the information-theoretical limit on performance of any neural network or algorithm. The MLANS operates on a two-dimensional representation of the signal in either the short-term spectral or the Wigner transform domain. The first layer of the network uses structured second-order neurons to estimate the signal model from training data. A second layer performs optimal multimodal Bayes classification. Learning efficiency approaching the information-theoretical limit is achieved in each layer of the MLANS.<>
基于模型的暂态信号的MLANS神经网络分类
提出了一种用于暂态信号识别的极大似然神经系统(MLANS)神经网络。MLANS的学习效率大大超过了其他神经网络,并且正在接近任何神经网络或算法性能的信息论极限。MLANS在短期谱域或维格纳变换域对信号的二维表示进行操作。网络的第一层使用结构化的二阶神经元从训练数据中估计信号模型。第二层执行最优多模态贝叶斯分类。每一层的学习效率都接近于信息论的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信