Optimized PID Controller for FOPDT Processes with Constraints on Maximum Sensitivity and Measurement Noise Sensitivity

K. Maghade, Swati S. Jadhav
{"title":"Optimized PID Controller for FOPDT Processes with Constraints on Maximum Sensitivity and Measurement Noise Sensitivity","authors":"K. Maghade, Swati S. Jadhav","doi":"10.1109/PACC.2011.5979018","DOIUrl":null,"url":null,"abstract":"For first order plus dead time (FOPDT) models, the four parameter optimized PID controller is designed subjecting to constraints on maximum sensitivity Ms and sensitivity to measurement noise Mn. Typical value of Ms is in the range 1 to 2 is considered while selecting the constraint on maximum sensitivity. The design procedure leads to formulation of three nonlinear equations which can be solved iteratively using fsolve function available in MATLAB. The two FOPDT processes are analyzed and simulated for different performance criterion and robustness, considering different values of damping factor ae. The optimal value of ae normally ranges from 0.75 to 0.85.","PeriodicalId":403612,"journal":{"name":"2011 International Conference on Process Automation, Control and Computing","volume":"305 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Process Automation, Control and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACC.2011.5979018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For first order plus dead time (FOPDT) models, the four parameter optimized PID controller is designed subjecting to constraints on maximum sensitivity Ms and sensitivity to measurement noise Mn. Typical value of Ms is in the range 1 to 2 is considered while selecting the constraint on maximum sensitivity. The design procedure leads to formulation of three nonlinear equations which can be solved iteratively using fsolve function available in MATLAB. The two FOPDT processes are analyzed and simulated for different performance criterion and robustness, considering different values of damping factor ae. The optimal value of ae normally ranges from 0.75 to 0.85.
具有最大灵敏度和测量噪声灵敏度约束的FOPDT过程的优化PID控制器
针对一阶加死区时间(FOPDT)模型,以最大灵敏度Ms和测量噪声灵敏度Mn为约束条件,设计了四参数优化PID控制器。在选择最大灵敏度约束时,考虑Ms的典型值在1 ~ 2范围内。设计过程涉及到三个非线性方程的公式,可使用MATLAB中的fsolve函数进行迭代求解。考虑不同的阻尼因子ae值,对两种FOPDT过程进行了不同性能准则和鲁棒性的分析和仿真。ae的最佳值通常在0.75 ~ 0.85之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信